首页 > 其他分享 >最新最全推荐系统相关优秀研究论文整理分享

最新最全推荐系统相关优秀研究论文整理分享

时间:2023-06-23 13:05:15浏览次数:34  
标签:based Neural 最全 论文 2019 2018 Learning Recommendation 分享


最新最全推荐系统相关优秀研究论文整理分享_sed

    推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。

    随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

    本资源整理了最近几年推荐系统相关的最新的一些,值得阅读的优质论文,涉及基于内容推荐算法、基于协同过滤推荐算法、可解释下推荐算法、序列推荐算法(Session-based推荐算法、上下文结合序列推荐)、基于知识图谱推荐算法、基于强化学习推荐算法、ctr预估、召回、多目标、多任务等推荐各个方面

    资源整理自网络,源地址: https://github.com/mengfeizhang820/Paperlist-for-Recommender-Systems

研究论文

    •Deep Learning based Recommender System: A Survey and New Perspectives [2017]

    •基于深度学习的推荐系统研究综述 [2018] 

    •Explainable Recommendation: A Survey and New Perspectives [2018] 

    •Sequence-Aware Recommender Systems [2018] 

    •DeepRec: An Open-source Toolkit for Deep Learning based Recommendation [IJCAI 2019] 

基于内容推荐算法

    •Convolutional Matrix Factorization for Document Context-Aware Recommendation [RecSys 2016]  

    •Joint Deep Modeling of Users and Items Using Reviews for Recommendation [WSDM 2017]

    •Multi-Pointer Co-Attention Networks for Recommendation [KDD 2018]

    •Gated attentive-autoencoder for content-aware recommendation [WSDM 2019]

   相关好书推荐,京东2万+,98%好评书籍:

广告

深度学习推荐系统(全彩)(博文视点出品)

作者:王喆

京东

购买

基于协同过滤推荐算法

    •Neural Collaborative Filtering [WWW 2017]

    •Collaborative Denoising Auto-Encoders for Top-N Recommender Systems  

    •Outer Product-based Neural Collaborative Filtering [IJCAI 2018]

    •Neural Graph Collaborative Filtering [SIGIR 2019] 

    •Transnets: Learning to transform for recommendation [RecSys 2017]

    •Metric Factorization: Recommendation beyond Matrix Factorization 

    •Improving Top-K Recommendation via Joint Collaborative Autoencoders 

    •Collaborative Metric Learning [WWW2017]

    •NeuRec : On Nonlinear Transformation for Personalized Ranking [IJACA 2018] 

    •DeepCF : A Unified Framework of Representation Learning and Matching Function Learning in Recommender System [AAAI2019 oral] 

    •Graph neural networks for social recommendation [WWW2019] 

    •STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems [[IJCAI2019]]  

    •Unifying Explicit and Implicit Feedback for Rating Prediction and Ranking Recommendation Tasks [[ICTIR2019]]  

    •Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation [AAAI2020] 

可解释推荐算法

    •Explainable Recommendation via Multi-Task Learning in Opinionated Text Data [SIGIR 2018]

    •TEM: Tree-enhanced Embedding Model for Explainable Recommendation [WWW 2018]

    •Neural Attentional Rating Regression with Review-level Explanations [WWW 2018] 

序列推荐算法

    Session-based推荐算法

    •Session-based Recommendations with Recurrent Neural Networks [ICLR 2016] 

    •Neural Attentive Session-based Recommendation [CIKM 2017] 

    •When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation [RecSys 2017]

    •STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation [KDD 2018] 

    •RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation [AAAI 2019]

    •Session-based Recommendation with Graph Neural Networks [AAAI 2019]

    •Streaming Session-based Recommendation [KDD 2019] 

    •Session-based Social Recommendation via Dynamic Graph Attention Networks [WSDM 2019]

    •Sequence and Time Aware Neighborhood for Session-based Recommendations [SIGIR 2019] 

    •Performance Comparison of Neural and Non-Neural Approaches to Session-based Recommendation [RecSys 2019]

    •Predictability Limits in Session-based Next Item Recommendation [RecSys 2019]

    •Empirical Analysis of Session-Based Recommendation Algorithms [2019] 

    •A Collaborative Session-based Recommendation Approach with Parallel Memory Modules [SIGIR2019] 

    •Rethinking the Item Order in Session-based Recommendation with Graph Neural Networks [CIKM2019]

    •Session-based Recommendation with Hierarchical Memory Networks [CIKM2019] 

    •ISLF: Interest Shift and Latent Factors Combination Model for Session-based Recommendation [IJCAI2019]

    •Variational Session-based Recommendation Using Normalizing Flows [WWW2019] 

    Last-N方法

    •Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding [WSDM 2018]

    •Self-Attentive Sequential Recommendation [ICDM 2018] 

    •Hierarchical Gating Networks for Sequential Recommendation [KDD 2019]

    •Next Item Recommendation with Self-Attention [ACM 2018]

    Long and short-term序列推荐

    •Collaborative Memory Network for Recommendation Systems [SIGIR 2018]

    •Sequential Recommender System based on Hierarchical Attention Network [IJCAI 2018] 

    •Hierarchical Temporal Convolutional Networks for Dynamic Recommender Systems [WWW 2019] 

    •A Large-scale Sequential Deep Matching Model for E-commerce Recommendation[CIKM 2019]

    •Recurrent Neural Networks for Long and Short-Term Sequential Recommendation [RecSys 2018] 

    •A Dynamic Co-attention Network for Session-based Recommendation [CIKM 2019]

    •Personalizing Graph Neural Networks with Attention Mechanism for Session-based Recommendation [TKDE 2019] 

    •A Long-Short Demands-Aware Model for Next-Item Recommendation [CoRR 2019]

    •Learning from History and Present : Next-item Recommendation via Discriminatively Exploiting User Behaviors [KDD 2018][JD]

    •Towards Neural Mixture Recommender for Long Range Dependent User Sequences[WWW 2019]

    •A Review-Driven Neural Model for Sequential Recommendation [IJCAI 2019] 

    •Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation [IJCAI 2019] [Microsoft]

    •Long- and Short-term Preference Learning for Next POI Recommendation [CIKM 2019] 

    •Neural News Recommendation with Long- and Short-term User Representations [ACL 2019][Microsoft]

    上下文结合序列推荐

    •Context-Aware Sequential Recommendations withStacked Recurrent Neural Networks [WWW 2019]

    其他

    •Hierarchical Neural Variational Model for Personalized Sequential Recommendation [WWW 2019]

    •Online Purchase Prediction via Multi-Scale Modeling of Behavior Dynamics [KDD 2019]

    •Log2Intent: Towards Interpretable User Modeling via Recurrent Semantics Memory Unit [KDD 2019]

    •Taxonomy-aware Multi-hop Reasoning Networks for Sequential Recommendation [WSDM 2019]

    •Recommender System Using Sequential and Global Preference via Attention Mechanism and Topic Modeling [CIKM 2019] 

基于知识图谱推荐算法

    •Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks [SIGIR 2018] 

    odataset and code : https://github.com/RUCDM/KB4Rec

    •DKN: Deep Knowledge-Aware Network for News Recommendation [WWW 2018] 

    •RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems [CIKM 2018] 

    •Knowledge Graph Convolutional Networks for Recommender Systems [WWW 2019] 

    •KGAT: Knowledge Graph Attention Network for Recommendation [KDD2019]

基于强化学习推荐算法

    •DRN: A Deep Reinforcement Learning Framework for News Recommendation [WWW 2018] 

    •Mention Recommendation in Twitter with Cooperative Multi-Agent Reinforcement Learning [SIGIR 2019]

    •Reinforcement Learning for User Intent Prediction in Customer Service Bots [SIGIR2019]

    •Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems [KDD2019]

    •Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology [IJCAI 2019]  [Youtube]

    •Top-K Off-Policy Correction for a REINFORCE Recommender System [WSDM 2019] [[Youtube]]

Multi-behavior学习推荐

    •Efficient Heterogeneous Collaborative Filtering without Negative Sampling for Recommendation [AAAI2020]

多任务学习推荐算法

    •Entire Space Multi-Task Model: An E ective Approach for Estimating Post-Click Conversion Rate [SIGIR2018]

    •Conversion Rate Prediction via Post-Click Behaviour Modeling

    •Rerceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks [KDD2018]

    •Modeling task relationships in multi-task learning with multi-gate mixture-of-experts [KDD2018]

    •Recommending What Video to Watch Next: A Multitask Ranking System [RecSys2019]

重排序算法

    •Personalized Re-ranking for Recommendation [RecSys2019][dataset]

    •Learning a Deep Listwise Context Model for Ranking Refinement [SIGIR2018]

工业级

    CTR预估

    •DeepFM: A Factorization-Machine based Neural Network for CTR Prediction [[IJCAI 2017]  [Huawei]

    •xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems] [KDD2018]  [Microsoft]

    •Order-aware Embedding Neural Network for CTR Prediction][SIGIR 2019]  [Huawei]

    •Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction [WWW 2019]  [Huawei]

    •Interaction-aware Factorization Machines for Recommender Systems [AAAI2019] [Tencent]

    召回

    •[Embedding] Item2Vec-Neural Item Embedding for Collaborative Filtering [Microsoft 2017]

    •[Embedding] DeepWalk- Online Learning of Social Representations [KDD 2014]

    •[Embedding] LINE - Large-scale Information Network Embedding [Microsoft 2015]

    •[Embedding] Node2vec - Scalable Feature Learning for Networks [Stanford 2016]

    •[Embedding] Structural Deep Network Embedding [KDD2016] 

    •[Embedding] Item2Vec-Neural Item Embedding for Collaborative Filtering [Microsoft 2017]

    •[Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb [KDD 2018] 

    •[Embedding] Graph Convolutional Neural Networks for Web-Scale Recommender Systems [KDD 2018] [Pinterest]

    •Is a Single Embedding Enough ? Learning Node Representations that Capture Multiple Social Contexts [WWW 2019] 

    •[Embedding] Representation Learning for Attributed Multiplex Heterogeneous Network [KDD 2019] 

    •[DNN Match] Deep Neural Networks for YouTube Recommendations [RecSys 2016] [Youtube]

    •[DNN Match] Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations[RecSys 2019] 

    •[Semantic Match] Deep Semantic Matching for Amazon Product Search [WSDM 2019][Amazon]

    •[Tree Match] Joint Optimization of Tree-based Index and Deep Model for Recommender Systems [NeurIPS 2019] [Tencent]

   相关好书推荐,京东2万+,98%好评书籍:

广告

深度学习推荐系统(全彩)(博文视点出品)

作者:王喆

京东

购买

    其他

    •Latent Cross: Making Use of Context in Recurrent Recommender Systems [WSDM 2018][Youtube]

    •Learning from History and Present: Next-item Recommendation via Discriminatively Exploting Users Behaviors [KDD 2018]

    •Real-time Attention Based Look-alike Model for Recommender System [KDD 2019]  [Tencent]

 Alibaba相关论文

    •[Match] TDM:Learning Tree-based Deep Model for Recommender Systems [KDD2018] 

    •[Match] Multi-Interest Network with Dynamic Routing for Recommendation at Tmall [2019]

    •[Long and short-term] SDM: Sequential Deep Matching Model for Online Large-scale Recommender System [CIKM 2019]

    •[Embedding] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba [KDD 2018]

    •[Embedding] Learning and Transferring IDs Representation in E-commerce [KDD 2018] 

    •[Representations] ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation [AAAI 2018] 

    •[Representations] Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks [KDD2018]

    •[exact-K recommendation] Exact-K Recommendation via Maximal Clique Optimization [KDD 2019]

    •[Explain]A Capsule Network for Recommendation and Explaining What You Like and Dislike [SIGIR2019]

    •[CTR] Privileged Features Distillation for E-Commerce Recommendations [Woodstock ’18]

    •[CTR] Representation Learning-Assisted Click-Through Rate Prediction [IJCAI 2019] 

    •[CTR] Deep Session Interest Network for Click-Through Rate Prediction [IJCAI 2019] 

    •[CTR] Deep Spatio-Temporal Neural Networks for Click-Through Rate Prediction] [KDD2019]  

    •[CTR] Graph Intention Network for Click-through Rate Prediction in Sponsored Search [SIGIR2019] 

    •[CTR] Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction [MLR]

    •[CTR] Deep Interest Evolution Network for Click-Through Rate Prediction [AAAI2019]

    •[CTR] Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction[KDD2019] 

    •[CTR] Behavior Sequence Transformer for E-commerce Recommendation in Alibaba 

    •[CVR] Entire Space Multi-Task Model: An E ective Approach for Estimating Post-Click Conversion Rate [SIGIR2018]

标签:based,Neural,最全,论文,2019,2018,Learning,Recommendation,分享
From: https://blog.51cto.com/u_13046751/6537811

相关文章

  • NLP面试高频知识点整理分享(附详细中文答案)
       本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含自然语言处理各领域的面试题积累。    资源整理自网络,源地址:https://github.com/km1994/NLP-Interview-Notes    内容涉及多次跳转,点击文末“阅读原文“”查看......
  • StyleGAN图像风格转换相关经典论文、项目、数据集等资源整理分享
        StyleGAN是NVIDIA继ProGAN之后提出的新的生成网络,其主要通过分别修改每一层级的输入,在不影响其他层级的情况下,来控制该层级所表示的视觉特征。这些特征可以是粗的特征(如姿势、脸型等),也可以是一些细节特征(如瞳色、发色等)。StyleGAN,提出了一个新的generatorarchitecture,号......
  • 2021年暑期实习、秋招深度学习算法岗面试要点及答案分享
        本文主要整理了深度学习相关算法面试中经常问到的一些核心概念,并给出了细致的解答,分享给大家。感受野    后一层神经元在前一层神经元的感受空间,如下图所示:    注意:小卷积核(如33)通过多层叠加可取得与大卷积核(如77)同等规模的感受野,此外采用小卷积核有两个优势:  ......
  • 基于知识图谱的智能对话系统必读经典论文整理分享
        人机对话系统作为人工智能的一项基础应用,越来越受到学术界和工业界的重视.人机对话系统主要分为两类:面向任务的人机对话系统可以完成基础的重复工作,节省人力成本;非任务型人机对话系统能够提供更加智能,更加拟人的对话体验.非任务型人机对话系统主要采用序列到序列的模......
  • 2021年迁移学习相关最新论文、会议、视频、竞赛整理分享
       迁移学习(Transferlearning)顾名思义就是把已训练好的模型(预训练模型)参数迁移到新的模型来帮助新模型训练。本资源整理了迁移学习相关的一些资源,本部分内容适合初学者,将一些本领域中的经典论文按照时间线进行分类、梳理,分为浅层域适应、深度域适应、对抗域适应和域适应理......
  • 历史最全机器学习/深度学习/人工智能专业术语表中英对照表
    本资源收录了机器学习课程用到的相关术语,涉及机器学习基础、机器学习理论、AppliedMath、SVM、Ensemble、DNN、Regularization、MatrixFactorization、Optimization、CNN、AutoEncoder、RNN、Representation、NetworkEmbedding、GAN、AdversarialLearning、OnlineLearni......
  • 自然语言处理481个公开数据集和基准任务整理分享
    自然语言处理(NaturalLanguageProcessing,NLP)以语言为对象,利用计算机技术来分析、理解和处理自然语言的一门学科,即把计算机作为语言研究的强大工具,在计算机的支持下对语言信息进行定量化的研究,并提供可供人与计算机之间能共同使用的语言描写。包括自然语言理解(Natural......
  • PMML-ONNX-AI Serving等深度学习模型上线-部署实战经验分享
    AI的广泛应用是由AI在开源技术的进步推动的,利用功能强大的开源模型库,数据科学家们可以很容易的训练一个性能不错的模型。但是因为模型生产环境和开发环境的不同,涉及到不同角色人员:模型训练是数据科学家和数据分析师的工作,但是模型部署是开发和运维工程师的事情,导致模型上线部署......
  • 元学习(Meta Learning)最全论文、视频、书籍资源整理
    MetaLearning,叫做元学习或者LearningtoLearn学会学习,包括Zero-Shot/One-Shot/Few-Shot学习,模型无关元学习(ModelAgnosticMetaLearning)和元强化学习(MetaReinforcementLearning)。元学习是人工智能领域,继深度学习是人工智能领域,继深度学习->深度强化学习、生成对抗......
  • 66天自然语言处理入门到精通实战计划及资源分享
    自然语言处理是语言学、计算机科学和人工智能的一个领域,涉及计算机和人类语言之间的相互交互,特别是如何编程计算机来处理和分析大量的自然语言数据。本资源整理了自然语言处理所需的各种库、依赖项和模块的等,经过66天的自然语言处理数据实战所需要的所有资源,掌握自然语言处理各......