网站首页
编程语言
数据库
系统相关
其他分享
编程问答
首页
>
其他分享
>莫比乌斯反演
莫比乌斯反演
时间:2023-06-03 10:22:09
浏览次数:55
标签:
乌斯
地方
构造
反演
莫比
例题
莫比乌斯反演的题主要是构造\(F(n)\)以及\(f(n)\) 例题老地方
标签:
乌斯
,
地方
,
构造
,
反演
,
莫比
,
例题
From: https://www.cnblogs.com/freshman666/p/17453415.html
相关文章
莫比乌斯反演与最大公约数
在数论中,有很多题目都与莫比乌斯反演有关,最典型的就是最大公约数。比如你可以见到如下常见问题。(1)已知,求为质数的的对数,或者等于1的的对数。(2)已知和,求为质数的的对数,或者等于1的的对数。(3)已知,求的对数。(4)已知和,求的对数。上面的问题其实都可以用莫比乌斯反演来解,时间复杂度都还可以......
浅谈反演
浅谈反演二项式反演\(g_i=\sum\limits_{j=0}\binom{i}{j}f_j,f_i=\sum\limits_{j=0}(-1)^{i-j}\binom{i}{j}g_j\)还有一个的形式\(g_i=\sum\limits_{j=i}\binom{j}{i}f_j,f_i=\sum\limits_{j=i}(-1)^{i-j}\binom{j}{i}g_j\)这里只针对第一个形式,为了得到更普遍的反演,这里我......
容斥与反演技巧(三)
Min-Max容斥简单来说,由于\(\mathbbE[\max(x,y)]\neq\max(\mathbbE[x],\mathbbE[y])\),而如果计算\(\mathbbE[\min(x,y)]\)比计算\(\mathbbE[\max(x,y)]\)容易得多,我们就通常使用min-max容斥转为计算\(\mathbbE[\min(x,y)]\)。对于上面这种\(x,y\)的情况,实际上......
莫比乌斯反演常见的三个模型
莫比乌斯反演常见模型模型1:\(\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=t]\)\[\begin{aligned}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=t]&=\sum_{i=1}^{\lfloor\frac{n}{t}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{t}\rfloor}[gcd(i,j)=1]\\&=\sum_{i=1}^{\lfloor\f......
莫比乌斯反演学习笔记(内涵反演详细推导和证明!)
莫比乌斯反演前言记得上次学这个东西已经是一年前了,题到没有做过几道……一些有趣的东西莫比乌斯这个人还是很nb的,相信大家都听说过莫比乌斯带,就是他发现的,跟所有数学大佬一样的,他还喜欢天文学和物理废话不扯多了前置知识整除分块一个在数论计算中异常常见的东西,一般和......
拉格朗日反演公式(lagrange inversion)组合证明
Thereisasimplecombinatorialproof.Theoriginalformis\[[t^n]w^k=\frac{k}{n}[t^{n-k}]\phi^k\]where\(w=t\phi(w)\)consider\(w\)asegf.ofthewaysofsometrees.\(\phi\)asageneratingruleconcerningdegree.\[n![x^n]\frac{w^k}{k......
单窗算法的地表温度反演:谷歌地球引擎GEE代码
本文介绍在GEE中基于Landsat遥感影像实现地表温度(LST)单窗算法反演的代码。1背景知识 基于遥感数据的地表温度(LST)反演目前得到了广泛的应用,尤其是面向大尺度、长时间范围的温度数据需求,遥感方法更是可以凸显其优势。目前,基于各类遥感数据源的地表温度反演方法不断得以改......
二项式反演
反演就是对于两个整数函数\(f\)和\(g\),从用\(g\)表示\(f\)转化为用\(f\)表示\(g\)。简而言之,\(f(n)\)是\(g(0),g(1),\cdots,g(n)\)的一个线性组合,那么很明显,有\(f(n)=\sum_{i=0}^na_{n,i}g(i)\)。如果把\(g(i),f(i)\)用向量\(G,F\)表示,那么\(F=\{a_{i,j}\}*G......
莫比乌斯反演
反演我们再来看看容斥原理实质上发生了什么——根据定义我们有\[N_\geq(S)=\sum\limits_{S\subseteqJ}N_=(J)\]而容斥原理(一般形式)表明\[N_=(S)=\sum\limits_{J:S\subseteqJ\subseteq\mathscr{A}}(-1)^{|J|-|S|}N_\geq(J)\]也就是说,容斥原理其实是由\((1)\)式解出了\((......
二项式反演
若\[g_n=\sum_{i=0}^n\dbinom{n}{i}f_n\]有\[f_n=\sum_{i=1}^{n}\dbinom{n}{i}g_n\]若\[g_i=\sum_{j=i}^{n}\dbinom{j}{i}f_j\]则\[f_i=\sum_{j=i}^{n}\dbinom{j}{i}(-1)^{j-i}g_j\]P4859已经没有什么好害怕的了给两个数列\(a\),\(b\),要求\(a_i,b_i\)两两匹配,......
赞助商
阅读排行
Python3网络爬虫浓缩系列
visual studio 2022离线安装包制作教程
#yyds干货盘点# 前端歌谣的刷题之路-第一百三十七题-可伸缩属性
Codeforces
使用U盘制作启动盘并重装系统
编写HelloWorld程序
departments/components/add.vue
1081. 度的数量
js- day03- 将数据变成柱形图
nginx使用
leetcode 22 括号生成
webrtc-streamer实现简单rtsp视频监控
wordpress外贸独立站商城 如此简单
函数练习错题
利用TableAdapter更新数据库