题面
在蔡徐坤右肩带脱落时,形成两个角\(\alpha , \beta\),其中
\(\alpha \in [\frac{\pi}{4} , \pi]\),\(\beta \in [\pi , \frac{3\pi}{2}]\) ,且 \(\sin2\alpha\) = \(\frac{ \sqrt{5}}{5}\),\(\sin(\alpha-\beta) = \frac{ \sqrt{10}}{10}\),问\(\alpha+\beta\)的值?
solution
首先,我们有 \(\sin2\alpha = \frac{\sqrt{5}}{5}\),可以得到
\[\cos2\alpha = \pm \sqrt{1-\sin^2 2\alpha} = \pm \frac{2}{\sqrt{5}} \]由于 \(\alpha \in [\frac{\pi}{4} , \pi]\),所以 \(\cos2\alpha < 0\),因此 \(\cos2\alpha = -\frac{2}{\sqrt{5}}\)。
接下来,我们需要求解 \(\cos(\alpha-\beta)\)。注意到
\[\begin{aligned} \cos(\alpha - \beta) &= \cos\alpha\cos\beta + \sin\alpha\sin\beta \\ &= \sin(\beta+\pi)\cos\alpha + \cos(\beta+\pi)\sin\alpha \\ &= -\sin\beta\cos\alpha - \cos\beta\sin\alpha \end{aligned} \]由于 \(\beta \in [\pi , \frac{3\pi}{2}]\),所以 \(\cos\beta < 0\),即 \(\cos\beta = -\sqrt{1-\sin^2\beta} = -\frac{2\sqrt{5}}{5}\)。
将上述结果代入 \(\cos(\alpha-\beta) = \pm \frac{3\sqrt{5}}{10}\),我们可以得到
\[\sin\alpha\sin\beta = -\frac{1}{2} \]接下来,我们使用 \(\sin(\alpha-\beta) = \frac{\sqrt{10}}{10}\) 来求解 \(\cos(\alpha-\beta)\)。注意到
\[\begin{aligned} \sin(\alpha-\beta) &= \sin\alpha\cos\beta - \cos\alpha\sin\beta \\ &= \sin\alpha\sqrt{1-\sin^2\beta} + \cos\alpha\frac{2\sqrt{5}}{5} \end{aligned} \]由于 \(\sin(\alpha-\beta) = \frac{\sqrt{10}}{10}\),我们可以得到
\[\sin\alpha = \frac{2\sqrt{2}}{5} \]接下来,我们可以使用 \(\cos(\alpha-\beta) = -\frac{3\sqrt{5}}{10}\) 来求解 \(\cos(\alpha+\beta)\)。注意到
\[\begin{aligned} \cos(\alpha-\beta) &= \cos\alpha\cos\beta + \sin\alpha\sin\beta \\ &= -\sin\beta\cos\alpha - \cos\beta\sin\alpha \end{aligned} \]将 \(\sin\alpha\sin\beta = -\frac{1}{2}\) 和 \(\cos(\alpha-\beta) = -\frac{3\sqrt{5}}{10}\) 代入上式,我们可以得到
\[\cos(\alpha+\beta) = -\frac{1}{2} \]因此,\(\alpha+\beta\) 的值在第三象限,即
\[\alpha+\beta = \frac{3\pi}{2} + \arccos\left(-\frac{1}{2}\right) = \frac{7\pi}{4} \]因此,\(\alpha+\beta\) 的值为 \(\frac{7\pi}{4}\)。
标签:cos,frac,三角函数,变换,lsh,beta,sqrt,alpha,sin From: https://www.cnblogs.com/devdede/p/17436008.html