同余的基本性质
注: 这里默认 $a , b , c ,d \in \mathbb{Z} , m , k , d \in \mathbb{Z}^+ $
-
若 $a_1 \equiv b_1 \pmod m $ ,\(a_2 \equiv b_2 \pmod m\) ,
则 \(a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod m\) . -
若 $a_1 \equiv b_1 \pmod m $ ,\(a_2 \equiv b_2 \pmod m\) ,
则 \(a_1 * a_2 \equiv b_1 * b_2 \pmod m\) . -
若 \(a + b \equiv c \pmod m\) ,
则 \(a \equiv c - b \pmod m\) . -
若 \(a \equiv b \pmod m\) ,
则 \(ak \equiv bk \pmod {mk}\) . -
若 \(d \mid a , d \mid b , d \mid m , a \equiv b \pmod m\) ,
则 \(\frac{a}{d} \equiv \frac{b}{d} \pmod \frac{m}{d}\) . -
若 \(d \mid m , a \equiv b \pmod m\) ,
则 \(a \equiv b \pmod d\) . -
若 \(a \equiv b \pmod m\) ,
则 \((a,m) = (b,m)\) .
$ \ \ \ \ $
若 \(d \mid m\) 且 \(d \mid a\) 或 \(b\) ,
则 \(d \mid a\) 且 \(d \mid b\).