Abstract
事件表分层抽样(SSET),它将ER缓冲区划分为事件表,每个事件表捕获最优行为的重要子序列。
我们证明了一种优于传统单片缓冲方法的理论优势,并将SSET与现有的优先采样策略相结合,以进一步提高学习速度和稳定性。
在具有挑战性的MiniGrid域、基准RL环境和高保真赛车模拟器中的实证结果表明,SSET比现有的ER缓冲采样方法具有优势和通用性。
Introduction
如果事件与最优行为相关,并且历史足够长,与使用均匀采样甚至PER相比,SSET可以显著加快非策略学习的收敛速度。即使这些条件不满足,偏置校正项也会保留Bellman目标,尽管收敛速度可能会减慢。
虽然SSET是一种从ERB中优化采样的新方法,但它是许多现有优先级方法或行为塑造技术的补充。具体来说,SSET可以基于每个表中使用的具有TD-error PER的已知事件应用,从而将重点放在也需要值更新的关键状态上。
贡献:
(1)介绍事件表和事件表SSET框架
(2)我们推导出理论保证,通过适当设计的事件量化样本复杂性的改善,并提供偏差校正,确保Bellman目标保持不变。
(3)我们在具有挑战性的MiniGrid环境和连续RL基准(MuJoCo和Lunar Lander)中实证证明了SSET优于均匀采样或PER的优势,并发现将SSET与TD-error PER或基于潜在的奖励塑造相结合可以进一步改善学习
Related Work
人们提出了许多ERB优先采样的方法。使用最广泛的是优先经验回放(PER) (Schaul等人,2016),它优先考虑具有最大TD错误的状态/动作。然而,PER并不专门关注与最优策略一致的状态:实际上,即使在行为策略改变后,在一个策略下具有零TD误差的经验也可能永远不会再次采样。除了与PER的经验比较外,本文表明,SSET可以与PER一起使用,以利用这两种方法的好处:专注于依赖与最优策略一致的高价值事件轨迹,但也对那些具有高贝尔曼误差的轨迹上的状态进行优先级排序。其他基于模型误差(Oh等人,2021年)或元学习过程(Zha等人,2019年)的优先级来增强vanilla PER的方法也可以类似地与SSET结合使用
SSET并不试图使用同一轨迹的小批量数据,而是依靠采样将轨迹分散到多个小批量中,从而提供沿着轨迹的稳定性和备份。
SSET允许任何基于状态的事件对ERB进行划分,更重要的是存储导致事件的轨迹,而不仅仅是事件本身,这对于确保样本复杂度至关重要。
事件表分层抽样
直观地说,每个表都包含了在接近事件发生区域训练值函数所需的数据,并链接在一起形成了备份的“快车道”(图1),与单一的ER相比,这些数据会被过度采样
一个示例MiniGrid域,具有达到目标或房间之间的间隙的事件条件。蓝色方块表示可以过度采样的状态的“快车道”,因为它们同时出现在事件表和默认表中。灰色状态只出现在默认表中。
与PER和其他ERB优先级方案一样,SSET在随机环境中会引入偏差