首页 > 其他分享 >Attention

Attention

时间:2023-04-23 21:14:51浏览次数:49  
标签:输出 Attention encoder state decoder hidden

参考:https://blog.csdn.net/weixin_52668444/article/details/115288690

传统的机器翻译为例子来说明为什么我们需要Attention。

encoder的工作原理和RNN类似,将词向量输入到Encoder中之后,我们将最后一个hidden state的输出结果作为encoder的输出,称之为context。Context可以理解成是encoder对当前输入句子的理解。之后将context输入进decoder中,然后每一个decoder中的hidden state的输出就是decoder 所预测的当前位子的单词。

从encoder到decoder的过程中,encoder中的第一个hidden state 是随机初始化的且在encoder中我们只在乎它的最后一个hidden state的输出,但是在decoder中,它的初始hidden state 是encoder的输出,且我们关心每一个decoder中的hidden state 的输出。
image
这种需求下,提出Attention技术。

标签:输出,Attention,encoder,state,decoder,hidden
From: https://www.cnblogs.com/xinxuann/p/17347749.html

相关文章