首页 > 其他分享 >电商产品评论数据情感分析

电商产品评论数据情感分析

时间:2023-04-06 16:00:29浏览次数:44  
标签:index word neg pos content 情感 评论 电商 data

# -*- coding: utf-8 -*-

# 代码12-1 评论去重的代码

import pandas as pd
import re
import jieba.posseg as psg
import numpy as np


# 去重,去除完全重复的数据
reviews = pd.read_csv("D:/school/three/below/12/data/reviews.csv")
reviews = reviews[['content', 'content_type']].drop_duplicates()
content = reviews['content']



# 代码12-2 数据清洗

# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile('[0-9a-zA-Z]|京东|美的|电热水器|热水器|')
content = content.apply(lambda x: strinfo.sub('', x))



# 代码12-3 分词、词性标注、去除停用词代码

# 分词
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker) 

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content, 
                       "word":word,
                       "nature":nature,
                       "content_type":content_type}) 

# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open("D:/school/three/below/12/data/stoplist.txt", 'r',encoding='UTF-8')
stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word




# 代码12-4 提取含有名词的评论

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]



# 代码12-5 绘制词云

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread('D:/school/three/below/12/data/pl.jpg')
wordcloud = WordCloud(font_path="C:/Windows/Fonts/STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis('off') 
plt.title('3122') plt.show()
# 将结果写出 result.to_csv("D:/school/three/below/12/data/in/word.csv", index = False, encoding = 'utf-8')

 

 

# -*- coding: utf-8 -*-

# 代码12-6 匹配情感词

import pandas as pd
import numpy as np
word = pd.read_csv("D:/school/three/below/12/data/word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv("D:/school/three/below/12/data/正面评价词语(中文).txt", header=None,sep="\n",
                          encoding = 'utf-8', engine='python')
neg_comment = pd.read_csv("D:/school/three/below/12/data/负面评价词语(中文).txt", header=None,sep="\n",
                          encoding = 'utf-8', engine='python')
pos_emotion = pd.read_csv("D:/school/three/below/12/data/正面情感词语(中文).txt", header=None,sep="\n",
                          encoding = 'utf-8', engine='python')
neg_emotion = pd.read_csv("D:/school/three/below/12/data/负面情感词语(中文).txt", header=None,sep="\n",
                          encoding = 'utf-8', engine='python') 

# 合并情感词与评价词
positive = set(pos_comment.iloc[:,0])|set(pos_emotion.iloc[:,0])
negative = set(neg_comment.iloc[:,0])|set(neg_emotion.iloc[:,0])
intersection = positive&negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame({"word":positive,
                         "weight":[1]*len(positive)})
negative = pd.DataFrame({"word":negative,
                         "weight":[-1]*len(negative)}) 

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on = 'word', right_on = 'word', 
                           how = 'right')
data_posneg = data_posneg.sort_values(by = ['index_content','index_word'])



# 代码12-7 修正情感倾向

# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv("D:/school/three/below/12/data/not.csv")

# 处理否定修饰词
data_posneg['amend_weight'] = data_posneg['weight']  # 构造新列,作为经过否定词修正后的情感值
data_posneg['id'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination['id']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg['index_content'] == 
                         only_inclination['index_content'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination['index_word'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict['term'] for i in review['word'][affective - 1]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]          
    elif affective > 1:
        ne = sum([i in notdict['term'] for i in review['word'][[affective - 1, 
                  affective - 2]]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]
            
# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby(['index_content'],
                                           as_index=False)['amend_weight'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value['amend_weight'] != 0]



# 代码12-8 查看情感分析效果

# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value['a_type'] = ''
emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos'
emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

# 查看情感分析结果
result = emotional_value.merge(word, 
                               left_on = 'index_content', 
                               right_on = 'index_content',
                               how = 'left')

result = result[['index_content','content_type', 'a_type']].drop_duplicates() 
confusion_matrix = pd.crosstab(result['content_type'], result['a_type'], 
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0,0] + confusion_matrix.iat[1,1])/confusion_matrix.iat[2,2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value['a_type'] == 'pos']['index_content'])
ind_neg = list(emotional_value[emotional_value['a_type'] == 'neg']['index_content'])
posdata = word[[i in ind_pos for i in word['index_content']]]
negdata = word[[i in ind_neg for i in word['index_content']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 正面情感词词云
freq_pos = posdata.groupby(by = ['word'])['word'].count()
freq_pos = freq_pos.sort_values(ascending = False)
backgroud_Image=plt.imread('D:/school/three/below/12/data/pl.jpg')
wordcloud = WordCloud(font_path="C:/Windows/Fonts/STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.imshow(pos_wordcloud)
plt.axis('off')
plt.title('3122')
plt.show()
# 负面情感词词云
freq_neg = negdata.groupby(by = ['word'])['word'].count()
freq_neg = freq_neg.sort_values(ascending = False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.imshow(neg_wordcloud)
plt.axis('off')
plt.title('3122')
plt.show()

# 将结果写出,每条评论作为一行
posdata.to_csv("D:/school/three/below/12/data/in/posdata.csv", index = False, encoding = 'utf-8')
negdata.to_csv("D:/school/three/below/12/data/in/negdata.csv", index = False, encoding = 'utf-8')

 

 

 

 

# -*- coding: utf-8 -*-

# 代码12-9 建立词典及语料库

import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv("D:/school/three/below/12/data/posdata.csv", encoding = 'utf-8')
negdata = pd.read_csv("D:/school/three/below/12/data/negdata.csv", encoding = 'utf-8')

from gensim import corpora, models
# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata['word']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata['word']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata['word']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata['word']]]   # 负面



# 代码12-10 主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;
    normA = 0.0;
    normB = 0.0;
    for a,b in zip(vector1, vector2):
        dot_product += a*b
        normA += a**2
        normB += b**2
    if normA == 0.0 or normB==0.0:
        return(None)
    else:
        return(dot_product / ((normA*normB)**0.5))

# 主题数寻优
def lda_k(x_corpus, x_dict):

    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)

    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)

        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"',i)) \
                             for i in term[k][1].split('+')])  # 列出所有词

        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词
        unique_word = set(word)  # 去除重复的词

        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))

        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))

        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)

# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel('正面评论LDA主题数寻优', fontproperties=font)
plt.title('3122')

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel('负面评论LDA主题数寻优', fontproperties=font)
plt.title('3122')



# 代码12-11 LDA主题分析


# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)

pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)

 

 

 

标签:index,word,neg,pos,content,情感,评论,电商,data
From: https://www.cnblogs.com/BanTang-o8o/p/17293056.html

相关文章

  • m基于HMM和博弈模型的LSTM互联网情感词性分类识别matlab仿真
    1.算法描述        传统的情感分析研究大多立足于解决主观性文本的情感分类问题,面向复杂交互式文本的情感演化分析却力所不逮.本文以天涯论坛短文本中文在线评论为研究对象,首先提出一种高效的情感计算框架捕捉在线评论所蕴含的情感倾向;然后将情感计算和博弈论相结合提......
  • 基于SSM+JSP实现的流浪猫狗救助系统(分为用户端和管理员端,领养动物、流浪动物知识学习
    @目录基于SSM+JSP实现的流浪猫狗救助系统实现功能截图系统功能使用技术完整源码基于SSM+JSP实现的流浪猫狗救助系统本系统是一个流浪猫狗救助系统,分为用户端和管理员端,用户端可以完成登陆注册、流浪猫狗知识学习、领养动物,管理员端可以对用户管理、流浪猫狗管理、领养管理、评论......
  • 零成本开店,腾讯的电商梦
    阅读本文大概需要2.1分钟。昨日,「微信小商店」正式上线了,并开放了内测申请通道。官方发布的消息是目前只支持「企业」和「个体工商户」开店。但今天我看到微信小商店开放了「个人」的开店申请,这意味着每个人都可以在微信上「摆摊」了,姑且跟大家简单聊聊。微信小商店开发的目的,是......
  • 直播电商平台开发,用el-checkout-group实现穿梭框el-transfer效果
    直播电商平台开发,用el-checkout-group实现穿梭框el-transfer效果一:页面构建 <el-form-itemlabel="选择模块:"prop="pubTime">  <divclass="app-select">   <divclass="list">    <el-inputv-model="searchWord&qu......
  • 大数据时代下,跨境电商如何利用数据实现快速发展
    随着全球化的发展,跨境电商成为了一个不可忽视的趋势。而在这个数字化的时代,大数据的应用已经成为了企业发展的重要手段。跨境电商企业如何利用数据实现快速发展,成为了一个备受关注的话题。一、大数据在跨境电商中的应用随着互联网的发展和普及,跨境电商已经成为了一个全球性的行......
  • 从数据角度看跨境电商:大数据带来的机遇和挑战
    互联网的不断发展,跨境电商已经成为了一个越来越重要的产业。大数据技术的发展,为跨境电商带来了机遇和挑战。一、大数据带来的机遇精准的营销策略大数据技术可以通过分析用户的行为和兴趣,提供更加精准的营销策略。通过数据分析,跨境电商可以更好地了解用户的需求,为用户提供更加......
  • vivo 评论中台的流量及数据隔离实践
    一、背景vivo评论中台通过提供评论发表、点赞、举报、自定义评论排序等通用能力,帮助前台业务快速搭建评论功能并提供评论运营能力,避免了前台业务的重复建设和数据孤岛问题。目前已有vivo短视频、vivo浏览器、负一屏、vivo商城等10+业务接入。这些业务的流量大小和波动范围不同,如何......
  • 第十二章 电商产品评论数据情感分析
    评论去重、数据清洗#-*-coding:utf-8-*-#代码12-1评论去重的代码importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\reviews.csv......
  • 电商产品评论数据情感分析
    importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("reviews.csv")reviews=reviews[['content','content_type']].drop_duplicates()content=reviews['content']......
  • 电商-产品推广中如何介入付费
    目录前言一阶段基础数据打造二阶段产品入池三阶段拉新和收割闭环路线一:直通车放大路线二:万相台拉新快介入路线三:引力魔方拉新路线四:综合推广四阶段拉新与收割闭环推荐流量前言2023年第一个季度,最大的感受就是补单风险不断地提高,多方都反馈存在补单就降权的情况。分析原因不......