首页 > 其他分享 >第十二章 电商产品评论数据情感分析

第十二章 电商产品评论数据情感分析

时间:2023-04-04 16:26:37浏览次数:37  
标签:index word neg 第十二章 pos content 情感 电商 data

评论去重、数据清洗

# -*- coding: utf-8 -*-

# 代码12-1 评论去重的代码

import pandas as pd
import re
import jieba.posseg as psg
import numpy as np


# 去重,去除完全重复的数据
reviews = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\reviews.csv")
reviews = reviews[['content', 'content_type']].drop_duplicates()
content = reviews['content']
# 代码12-2 数据清洗

# 去除去除英文、数字等
# 由于评论主要为京东美的电热水器的评论,因此去除这些词语
strinfo = re.compile('[0-9a-zA-Z]|京东|美的|电热水器|热水器|')
content = content.apply(lambda x: strinfo.sub('', x))

分词、词性标注、去除停用词

# 代码12-3 分词、词性标注、去除停用词代码

# 分词
worker = lambda s: [(x.word, x.flag) for x in psg.cut(s)] # 自定义简单分词函数
seg_word = content.apply(worker) 

# 将词语转为数据框形式,一列是词,一列是词语所在的句子ID,最后一列是词语在该句子的位置
n_word = seg_word.apply(lambda x: len(x))  # 每一评论中词的个数

n_content = [[x+1]*y for x,y in zip(list(seg_word.index), list(n_word))]
index_content = sum(n_content, [])  # 将嵌套的列表展开,作为词所在评论的id

seg_word = sum(seg_word, [])
word = [x[0] for x in seg_word]  # 词

nature = [x[1] for x in seg_word]  # 词性

content_type = [[x]*y for x,y in zip(list(reviews['content_type']), list(n_word))]
content_type = sum(content_type, [])  # 评论类型

result = pd.DataFrame({"index_content":index_content, 
                       "word":word,
                       "nature":nature,
                       "content_type":content_type}) 

# 删除标点符号
result = result[result['nature'] != 'x']  # x表示标点符号

# 删除停用词
stop_path = open("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\stoplist.txt", 'r',encoding='UTF-8')
stop = stop_path.readlines()
stop = [x.replace('\n', '') for x in stop]
word = list(set(word) - set(stop))
result = result[result['word'].isin(word)]

# 构造各词在对应评论的位置列
n_word = list(result.groupby(by = ['index_content'])['index_content'].count())
index_word = [list(np.arange(0, y)) for y in n_word]
index_word = sum(index_word, [])  # 表示词语在改评论的位置

# 合并评论id,评论中词的id,词,词性,评论类型
result['index_word'] = index_word

提取含有名词的评论

# 代码12-4 提取含有名词的评论

# 提取含有名词类的评论
ind = result[['n' in x for x in result['nature']]]['index_content'].unique()
result = result[[x in ind for x in result['index_content']]]

绘制词云

# 代码12-5 绘制词云

import matplotlib.pyplot as plt
from wordcloud import WordCloud

frequencies = result.groupby(by = ['word'])['word'].count()
frequencies = frequencies.sort_values(ascending = False)
backgroud_Image=plt.imread("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\pl.jpg")
wordcloud = WordCloud(font_path="C:\\Windows\\Fonts\\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
my_wordcloud = wordcloud.fit_words(frequencies)
plt.imshow(my_wordcloud)
plt.axis('off')
plt.show()
print(3140)

# 将结果写出
result.to_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\word.csv", index = False, encoding = 'utf-8')

 

 

匹配情感词

# -*- coding: utf-8 -*-

# 代码12-6 匹配情感词

import pandas as pd
import numpy as np
word = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\word.csv")

# 读入正面、负面情感评价词
pos_comment = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\正面评价词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
neg_comment = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\负面评价词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
pos_emotion = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\正面情感词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python')
neg_emotion = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\负面情感词语(中文).txt", header=None,sep="\n", 
                          encoding = 'utf-8', engine='python') 

# 合并情感词与评价词
positive = set(pos_comment.iloc[:,0])|set(pos_emotion.iloc[:,0])
negative = set(neg_comment.iloc[:,0])|set(neg_emotion.iloc[:,0])
intersection = positive&negative  # 正负面情感词表中相同的词语
positive = list(positive - intersection)
negative = list(negative - intersection)
positive = pd.DataFrame({"word":positive,
                         "weight":[1]*len(positive)})
negative = pd.DataFrame({"word":negative,
                         "weight":[-1]*len(negative)}) 

posneg = positive.append(negative)

#  将分词结果与正负面情感词表合并,定位情感词
data_posneg = posneg.merge(word, left_on = 'word', right_on = 'word', 
                           how = 'right')
data_posneg = data_posneg.sort_values(by = ['index_content','index_word'])

修正情感倾向

# 代码12-7 修正情感倾向

# 根据情感词前时候有否定词或双层否定词对情感值进行修正
# 载入否定词表
notdict = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\not.csv")

# 处理否定修饰词
data_posneg['amend_weight'] = data_posneg['weight']  # 构造新列,作为经过否定词修正后的情感值
data_posneg['id'] = np.arange(0, len(data_posneg))
only_inclination = data_posneg.dropna()  # 只保留有情感值的词语
only_inclination.index = np.arange(0, len(only_inclination))
index = only_inclination['id']

for i in np.arange(0, len(only_inclination)):
    review = data_posneg[data_posneg['index_content'] == 
                         only_inclination['index_content'][i]]  # 提取第i个情感词所在的评论
    review.index = np.arange(0, len(review))
    affective = only_inclination['index_word'][i]  # 第i个情感值在该文档的位置
    if affective == 1:
        ne = sum([i in notdict['term'] for i in review['word'][affective - 1]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]          
    elif affective > 1:
        ne = sum([i in notdict['term'] for i in review['word'][[affective - 1, 
                  affective - 2]]])
        if ne == 1:
            data_posneg['amend_weight'][index[i]] = -\
            data_posneg['weight'][index[i]]
            
# 更新只保留情感值的数据
only_inclination = only_inclination.dropna()

# 计算每条评论的情感值
emotional_value = only_inclination.groupby(['index_content'],
                                           as_index=False)['amend_weight'].sum()

# 去除情感值为0的评论
emotional_value = emotional_value[emotional_value['amend_weight'] != 0]

查看情感分析效果

# 代码12-8 查看情感分析效果

# 给情感值大于0的赋予评论类型(content_type)为pos,小于0的为neg
emotional_value['a_type'] = ''
emotional_value['a_type'][emotional_value['amend_weight'] > 0] = 'pos'
emotional_value['a_type'][emotional_value['amend_weight'] < 0] = 'neg'

# 查看情感分析结果
result = emotional_value.merge(word, 
                               left_on = 'index_content', 
                               right_on = 'index_content',
                               how = 'left')

result = result[['index_content','content_type', 'a_type']].drop_duplicates() 
confusion_matrix = pd.crosstab(result['content_type'], result['a_type'], 
                               margins=True)  # 制作交叉表
(confusion_matrix.iat[0,0] + confusion_matrix.iat[1,1])/confusion_matrix.iat[2,2]

# 提取正负面评论信息
ind_pos = list(emotional_value[emotional_value['a_type'] == 'pos']['index_content'])
ind_neg = list(emotional_value[emotional_value['a_type'] == 'neg']['index_content'])
posdata = word[[i in ind_pos for i in word['index_content']]]
negdata = word[[i in ind_neg for i in word['index_content']]]

# 绘制词云
import matplotlib.pyplot as plt
from wordcloud import WordCloud
# 正面情感词词云
freq_pos = posdata.groupby(by = ['word'])['word'].count()
freq_pos = freq_pos.sort_values(ascending = False)
backgroud_Image=plt.imread("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\pl.jpg")
wordcloud = WordCloud(font_path="C:\\Windows\\Fonts\\STZHONGS.ttf",
                      max_words=100,
                      background_color='white',
                      mask=backgroud_Image)
pos_wordcloud = wordcloud.fit_words(freq_pos)
plt.imshow(pos_wordcloud)
plt.axis('off') 
plt.show()
# 负面情感词词云
freq_neg = negdata.groupby(by = ['word'])['word'].count()
freq_neg = freq_neg.sort_values(ascending = False)
neg_wordcloud = wordcloud.fit_words(freq_neg)
plt.imshow(neg_wordcloud)
plt.axis('off') 
plt.show()
print(3140)

# 将结果写出,每条评论作为一行
posdata.to_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\posdata.csv", index = False, encoding = 'utf-8')
negdata.to_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\negdata.csv", index = False, encoding = 'utf-8')

 

 

建立词典及语料库

# -*- coding: utf-8 -*-

# 代码12-9 建立词典及语料库

import pandas as pd
import numpy as np
import re
import itertools
import matplotlib.pyplot as plt

# 载入情感分析后的数据
posdata = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\posdata.csv", encoding = 'utf-8')
negdata = pd.read_csv("E:\\anaconda3\\jupyterFile\\数据分析\\data\\data\\tmp\\negdata.csv", encoding = 'utf-8')

from gensim import corpora, models
# 建立词典
pos_dict = corpora.Dictionary([[i] for i in posdata['word']])  # 正面
neg_dict = corpora.Dictionary([[i] for i in negdata['word']])  # 负面

# 建立语料库
pos_corpus = [pos_dict.doc2bow(j) for j in [[i] for i in posdata['word']]]  # 正面
neg_corpus = [neg_dict.doc2bow(j) for j in [[i] for i in negdata['word']]]   # 负面

主题数寻优

# 代码12-10 主题数寻优

# 构造主题数寻优函数
def cos(vector1, vector2):  # 余弦相似度函数
    dot_product = 0.0;  
    normA = 0.0;  
    normB = 0.0;  
    for a,b in zip(vector1, vector2): 
        dot_product += a*b  
        normA += a**2  
        normB += b**2  
    if normA == 0.0 or normB==0.0:  
        return(None)  
    else:  
        return(dot_product / ((normA*normB)**0.5))   

# 主题数寻优
def lda_k(x_corpus, x_dict):  
    
    # 初始化平均余弦相似度
    mean_similarity = []
    mean_similarity.append(1)
    
    # 循环生成主题并计算主题间相似度
    for i in np.arange(2,11):
        lda = models.LdaModel(x_corpus, num_topics = i, id2word = x_dict)  # LDA模型训练
        for j in np.arange(i):
            term = lda.show_topics(num_words = 50)
            
        # 提取各主题词
        top_word = []
        for k in np.arange(i):
            top_word.append([''.join(re.findall('"(.*)"',i)) \
                             for i in term[k][1].split('+')])  # 列出所有词
           
        # 构造词频向量
        word = sum(top_word,[])  # 列出所有的词   
        unique_word = set(word)  # 去除重复的词
        
        # 构造主题词列表,行表示主题号,列表示各主题词
        mat = []
        for j in np.arange(i):
            top_w = top_word[j]
            mat.append(tuple([top_w.count(k) for k in unique_word]))  
            
        p = list(itertools.permutations(list(np.arange(i)),2))
        l = len(p)
        top_similarity = [0]
        for w in np.arange(l):
            vector1 = mat[p[w][0]]
            vector2 = mat[p[w][1]]
            top_similarity.append(cos(vector1, vector2))
            
        # 计算平均余弦相似度
        mean_similarity.append(sum(top_similarity)/l)
    return(mean_similarity)
            
# 计算主题平均余弦相似度
pos_k = lda_k(pos_corpus, pos_dict)
neg_k = lda_k(neg_corpus, neg_dict)        

# 绘制主题平均余弦相似度图形
from matplotlib.font_manager import FontProperties  
font = FontProperties(size=14)
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False  
fig = plt.figure(figsize=(10,8))
ax1 = fig.add_subplot(211)
ax1.plot(pos_k)
ax1.set_xlabel('正面评论LDA主题数寻优 3140', fontproperties=font)

ax2 = fig.add_subplot(212)
ax2.plot(neg_k)
ax2.set_xlabel('负面评论LDA主题数寻优 3140', fontproperties=font)

 

 

LDA主题分析

# 代码12-11 LDA主题分析

# LDA主题分析
pos_lda = models.LdaModel(pos_corpus, num_topics = 3, id2word = pos_dict)  
neg_lda = models.LdaModel(neg_corpus, num_topics = 3, id2word = neg_dict)  
pos_lda.print_topics(num_words = 10)

neg_lda.print_topics(num_words = 10)

 

标签:index,word,neg,第十二章,pos,content,情感,电商,data
From: https://www.cnblogs.com/hxq----1094552116/p/17286796.html

相关文章

  • 电商产品评论数据情感分析
    importpandasaspdimportreimportjieba.possegaspsgimportnumpyasnp#去重,去除完全重复的数据reviews=pd.read_csv("reviews.csv")reviews=reviews[['content','content_type']].drop_duplicates()content=reviews['content']......
  • 电商-产品推广中如何介入付费
    目录前言一阶段基础数据打造二阶段产品入池三阶段拉新和收割闭环路线一:直通车放大路线二:万相台拉新快介入路线三:引力魔方拉新路线四:综合推广四阶段拉新与收割闭环推荐流量前言2023年第一个季度,最大的感受就是补单风险不断地提高,多方都反馈存在补单就降权的情况。分析原因不......
  • 电商产品评论数据情感分析
    针对用户在电商平台上留下的评论数据,对其进行分词、词性标注和去除停用词等文本预处理。基于预处理后的数据进行情感分析,并使用LDA主题模型提取评论关键信息,以了解用户的需求、意见、购买原因及产品的优缺点等,最终提出改善产品的建议。数据预处理评论去重避免一些客户长时间不......
  • 大数据带来新机遇:如何利用大数据技术优化跨境电商运营?
    互联网和电商的不断发展,跨境电商已经成为一种全新的商业模式。然而,跨境电商的运营需要面对很多挑战,如物流、支付、语言文化等。如何利用大数据技术优化跨境电商运营成为一个重要的课题。一、大数据技术在跨境电商中的应用数据挖掘数据挖掘是大数据技术的核心之一,它可以对跨......
  • 跨境电商时代的“智慧引擎”:探索大数据如何推动跨境电商发展
    如今跨境电商成为了国际贸易领域的一个新热点,而大数据技术的应用,则为跨境电商的发展提供了强大的助力。本文将从大数据的角度探讨如何推动跨境电商的发展,以及大数据技术在跨境电商中的应用。 一、大数据与跨境电商随着全球化的加速,跨境电商已成为全球贸易的一部分。跨境电商......
  • 印度最大电商网站Flipkart新增预付钱包功能
    近日,被称为“印度的亚马逊”的印度最大电子商务网站Flipkart为其平台新增了预付钱包功能。通过该功能,用户可在其网站上预存一定金额的钱,避免每次网购都需输入信用卡信息的麻烦,既快捷又安全。Flipkart成立于2007年,创始人Sachin和BinnyBansal均是亚马逊的前雇员。Flipkart是印度......
  • 新手如何使用Tiktok加速器做跨境电商?可以加速Tiktok网络的节点分享
    TikTok是一款全球性的视频应用程序,越来越多的跨境电商企业开始在TikTok上开展业务。然而,由于地理位置和网络原因,许多跨境电商企业在使用TikTok时会遇到卡顿、延迟等问题,影响了业务的正常运营。 为了解决这些问题,许多跨境电商企业开始使用TikTok加速器。那么,新手如何使用TikTok......
  • 跨境出海蓬勃发展,茄子科技助力跨境电商实现品牌出海
    近两年随着全球消费者的需求愈发多元且细分,出海企业开始迈进品牌化方向。从工具、游戏到电商、社交,大厂们为突破国内增长瓶颈,纷纷进军海外市场,引起新一轮出海浪潮。然而出海并没有想象的那样容易,充满了风险与挑战。以跨境电商为例,除了吃透供应链红利的Shein等标志性企业,许多出海品......
  • 类似京东无货源电商怎么做,新手怎么做无货源电商
    无货源电商怎么做,新手怎么做无货源电商,无货源电商平台有哪些,哪些平台可以做无货源电商,无货源电商有哪些优势,什么是无货源电商,无货源电商软件开发公司哪家好,无货源电商APP哪个好,有哪些电商平台适合做无货源,无货源电商APP开发,无货源电商软件开发,无货源电商小程序开发,无货源电商抖......
  • R语言SVM支持向量机、文本挖掘新闻语料情感情绪分类和词云可视化
    支持向量机(SVM)是一种机器学习方法,基于结构风险最小化原则,即通过少量样本数据,得到尽可能多的样本数据。支持向量机对线性问题进行处理,能解决非线性分类问题。本文介绍了R语言中的SVM工具箱及其支持向量机(SVM)方法,并将其应用于文本情感分析领域,结果表明,该方法是有效的。在此基础上,对......