上代码
绿色底纹 部分 代表 单个通道 热力图生成 代码;
import cv2 import time import os import matplotlib.pyplot as plt import torch from torch import nn import torchvision.models as models import torchvision.transforms as transforms import numpy as np savepath = r'features_heat' if not os.path.exists(savepath): os.mkdir(savepath) def draw_features(width, height, x, savename): fig = plt.figure(figsize=(16, 16)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05) for i in range(width * height): plt.subplot(height, width, i + 1) plt.axis('off')
# 归一化每个通道 img = x[0, i, :, :] # x:[b c h w] pmin = np.min(img) pmax = np.max(img) img = ((img - pmin) / (pmax - pmin + 0.000001)) * 255 # float在[0,1]之间,转换成0-255 img = img.astype(np.uint8) # 转成unit8 print(img.shape) # (14, 14) img = cv2.applyColorMap(img, cv2.COLORMAP_JET) # 生成heat map print(img.shape) # (14, 14, 3) img = img[:, :, ::-1] # 注意cv2(BGR)和matplotlib(RGB)通道是相反的 plt.imshow(img) print("完成plot {}/{}".format(i, width * height)) fig.savefig(savename, dpi=100) fig.clf() plt.close() class ft_net(nn.Module): def __init__(self): super(ft_net, self).__init__() model_ft = models.resnet50(pretrained=True) print([i for i in model_ft.children()]) self.model = model_ft def forward(self, x): if True: # draw features or not x = self.model.conv1(x) draw_features(8, 8, x.cpu().numpy(), "{}/f1_conv1.png".format(savepath)) x = self.model.bn1(x) draw_features(8, 8, x.cpu().numpy(), "{}/f2_bn1.png".format(savepath)) x = self.model.relu(x) draw_features(8, 8, x.cpu().numpy(), "{}/f3_relu.png".format(savepath)) x = self.model.maxpool(x) draw_features(8, 8, x.cpu().numpy(), "{}/f4_maxpool.png".format(savepath)) x = self.model.layer1(x) draw_features(16, 16, x.cpu().numpy(), "{}/f5_layer1.png".format(savepath)) x = self.model.layer2(x) draw_features(16, 32, x.cpu().numpy(), "{}/f6_layer2.png".format(savepath)) x = self.model.layer3(x) draw_features(32, 32, x.cpu().numpy(), "{}/f7_layer3.png".format(savepath)) x = self.model.layer4(x) draw_features(32, 32, x.cpu().numpy()[:, 0:1024, :, :], "{}/f8_layer4_1.png".format(savepath)) draw_features(32, 32, x.cpu().numpy()[:, 1024:2048, :, :], "{}/f8_layer4_2.png".format(savepath)) x = self.model.avgpool(x) plt.plot(np.linspace(1, 2048, 2048), x.cpu().numpy()[0, :, 0, 0]) plt.savefig("{}/f9_avgpool.png".format(savepath)) plt.clf() plt.close() x = x.view(x.size(0), -1) x = self.model.fc(x) plt.plot(np.linspace(1, 1000, 1000), x.cpu().numpy()[0, :]) plt.savefig("{}/f10_fc.png".format(savepath)) plt.clf() plt.close() else: print(44444444444444444444444444444444) x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.model.avgpool(x) x = x.view(x.size(0), -1) x = self.model.fc(x) return x model = ft_net()#.cuda() model.eval() img = cv2.imread('image1.jpg') img = cv2.resize(img, (224, 224)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) img = transform(img)#.cuda() img = img.unsqueeze(0) with torch.no_grad(): out = model(img) result = out ind = np.argsort(result, axis=1) for i in range(5): print("predict:top {} = cls {} : score {}".format(i + 1, ind[0, 1000 - i - 1], result[0, 1000 - i - 1])) print("done")
输入图像
conv1 [1,64,112,112]
bn1_relu [1,64,112,112]
maxpool [1,64,56,56]
layer1 [1,256,56,56]
layer2 [1,512,28,28]
layer3 [1,1024,14,14]
layer4 [1,2048,7,7]
avgpool [1,2048]
fc [1,1000]
其中:横轴是类别编号,纵轴是输出的类别得分(没有经过softmax)
参考资料:
https://blog.csdn.net/weixin_40500230/article/details/93845890 Pytorch自带Resnet50特征图heat map热力图可视化
标签:map,plt,img,format,self,feature,opencv,savepath,model From: https://www.cnblogs.com/yanshw/p/17054745.html