首页 > 其他分享 >商品数据分析

商品数据分析

时间:2023-03-19 21:14:34浏览次数:54  
标签:数据分析 plt 置信度 值为 商品 lift frozenset data

import numpy as np 
import pandas as pd

inputfile = 'D://人工智能//GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding='gbk')
data.info()

data = data['id']
description = [data.count(),data.min(),data.max()]
description = pd.DataFrame(description, index=['Count','Min','Max']).T
print('2020310143024许伊诺20信计1班 描述性统计结果:\n',np.round(description))

 

 

# 代码8-2 分析热销商品

# 销量排行前10商品的销量及其占比
import pandas as pd
inputfile = 'D://人工智能//GoodsOrder.csv'  # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
group = data.groupby(['Goods']).count().reset_index()  # 对商品进行分类汇总
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量:\n', sorted[:10])  # 排序并查看前10位热销商品

# 画条形图展示出销量排行前10商品的销量
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize = (8, 4))  # 设置画布大小 
plt.barh(x,y)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.xlabel('销量')  # 设置x轴标题
plt.ylabel('商品类别')  # 设置y轴标题
plt.title('2020310143024许伊诺20信计1班 商品的销量TOP10')  # 设置标题
plt.savefig('D:人工智能//top10.png')  # 把图片以.png格式保存
plt.show()  # 展示图片

# 销量排行前10商品的销量占比
data_nums = data.shape[0]
for idnex, row in sorted[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

 

 

 

 

 

 

import pandas as pd
inputfile1 = 'D://人工智能/GoodsOrder.csv'
inputfile2 = 'D://人工智能/GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 = 'D://人工智能/percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果

# 画饼图展示每类商品销量占比
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8, 6))  # 设置画布大小   
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('2020310143024许伊诺20信计1班 每类商品销量占比')  # 设置标题
plt.savefig('D://人工智能/persent.png')  # 把图片以.png格式保存
plt.show()

 

 

 

 

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']  # 挑选商品类别为“非酒精饮料”并排序
child_nums = selected['id'].sum()  # 对所有的“非酒精饮料”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = 'D://人工智能/child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示非酒精饮品内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("2020310143024许伊诺20信计1班 非酒精饮料内部各商品的销量占比")  # 设置标题
plt.axis('equal')
plt.savefig('D://人工智能/child_persent.png')  # 保存图形
plt.show()  # 展示图形

 

 

 

 

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
child_nums = selected['id'].sum()  # 对所有的“西点”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比:\n',selected)
outfile2 = 'D://人工智能//child_percent1.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示西点内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小 
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点内部各商品的销量占比20信计1班许伊诺2020310143024")  # 设置标题
plt.axis('equal')
plt.savefig('D://人工智能//child_persent1.png')  # 保存图形
plt.show()  # 展示图形
西点内部商品的销量及其占比:
      Goods  count Types  child_percent
2      面包卷   1809    西点       0.251529
10      糕点    875    西点       0.121663
18     黑面包    638    西点       0.088710
31     白面包    414    西点       0.057564
32    奶油乳酪    390    西点       0.054227
33     威化饼    378    西点       0.052558
34     咸点心    372    西点       0.051724
35     长面包    368    西点       0.051168
36      甜点    365    西点       0.050751
48       酪    275    西点       0.038237
54    切片奶酪    241    西点       0.033509
55     硬奶酪    241    西点       0.033509
64   半成品面包    174    西点       0.024194
68     软奶酪    168    西点       0.023359
74    风味蛋糕    130    西点       0.018076
92      甜食     89    西点       0.012375
94    特色奶酪     84    西点       0.011680
103    面包干     68    西点       0.009455
116    干面包     50    西点       0.006952
117    凝乳酪     50    西点       0.006952
152     奶油     13    西点       0.001808

 

 

# -*- coding: utf-8 -*-

# 代码8-6 构建关联规则模型

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))     
    
# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData
 
def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
# 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData
 
# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)
 
def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
  
if __name__ == '__main__':
    import pandas as pd
    inputfile=r'D://人工智能\GoodsOrder.csv'
    data = pd.read_csv(inputfile,encoding = 'gbk')

    # 根据id对“Goods”列合并,并使用“,”将各商品隔开
    data['Goods'] = data['Goods'].apply(lambda x:','+x)
    data = data.groupby('id').sum().reset_index()

    # 对合并的商品列转换数据格式
    data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
    data_list = list(data['Goods'])

    # 分割商品名为每个元素
    data_translation = []
    for i in data_list:
        p = i[0].split(',')
        data_translation.append(p)
    print('数据转换结果的前5个元素:\n', data_translation[0:5])

    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)

数据转换结果的前5个元素:
[['柑橘类水果', '人造黄油', '即食汤', '半成品面包'], ['咖啡', '热带水果', '酸奶'], ['全脂牛奶'], ['奶油乳酪', '肉泥', '仁果类水果', '酸奶'], ['炼乳', '长面包', '其他蔬菜', '全脂牛奶']]
frozenset({'水果/蔬菜汁'}) --> frozenset({'全脂牛奶'}) 支持度 0.02664 置信度: 0.368495 lift值为: 1.44216
frozenset({'人造黄油'}) --> frozenset({'全脂牛奶'}) 支持度 0.024199 置信度: 0.413194 lift值为: 1.617098
frozenset({'仁果类水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.030097 置信度: 0.397849 lift值为: 1.557043
frozenset({'牛肉'}) --> frozenset({'全脂牛奶'}) 支持度 0.021251 置信度: 0.405039 lift值为: 1.58518
frozenset({'冷冻蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.020437 置信度: 0.424947 lift值为: 1.663094
frozenset({'本地蛋类'}) --> frozenset({'其他蔬菜'}) 支持度 0.022267 置信度: 0.350962 lift值为: 1.813824
frozenset({'黄油'}) --> frozenset({'其他蔬菜'}) 支持度 0.020031 置信度: 0.361468 lift值为: 1.868122
frozenset({'本地蛋类'}) --> frozenset({'全脂牛奶'}) 支持度 0.029995 置信度: 0.472756 lift值为: 1.850203
frozenset({'黑面包'}) --> frozenset({'全脂牛奶'}) 支持度 0.025216 置信度: 0.388715 lift值为: 1.521293
frozenset({'糕点'}) --> frozenset({'全脂牛奶'}) 支持度 0.033249 置信度: 0.373714 lift值为: 1.462587
frozenset({'酸奶油'}) --> frozenset({'其他蔬菜'}) 支持度 0.028876 置信度: 0.402837 lift值为: 2.081924
frozenset({'猪肉'}) --> frozenset({'其他蔬菜'}) 支持度 0.021657 置信度: 0.375661 lift值为: 1.941476
frozenset({'酸奶油'}) --> frozenset({'全脂牛奶'}) 支持度 0.032232 置信度: 0.449645 lift值为: 1.759754
frozenset({'猪肉'}) --> frozenset({'全脂牛奶'}) 支持度 0.022166 置信度: 0.38448 lift值为: 1.504719
frozenset({'根茎类蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.048907 置信度: 0.448694 lift值为: 1.756031
frozenset({'根茎类蔬菜'}) --> frozenset({'其他蔬菜'}) 支持度 0.047382 置信度: 0.434701 lift值为: 2.246605
frozenset({'凝乳'}) --> frozenset({'全脂牛奶'}) 支持度 0.026131 置信度: 0.490458 lift值为: 1.919481
frozenset({'热带水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.042298 置信度: 0.403101 lift值为: 1.577595
frozenset({'柑橘类水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.030503 置信度: 0.36855 lift值为: 1.442377
frozenset({'黄油'}) --> frozenset({'全脂牛奶'}) 支持度 0.027555 置信度: 0.497248 lift值为: 1.946053
frozenset({'酸奶'}) --> frozenset({'全脂牛奶'}) 支持度 0.056024 置信度: 0.401603 lift值为: 1.571735
frozenset({'其他蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.074835 置信度: 0.386758 lift值为: 1.513634
frozenset({'全脂牛奶', '酸奶'}) --> frozenset({'其他蔬菜'}) 支持度 0.022267 置信度: 0.397459 lift值为: 2.054131
frozenset({'其他蔬菜', '酸奶'}) --> frozenset({'全脂牛奶'}) 支持度 0.022267 置信度: 0.512881 lift值为: 2.007235
frozenset({'全脂牛奶', '根茎类蔬菜'}) --> frozenset({'其他蔬菜'}) 支持度 0.023183 置信度: 0.474012 lift值为: 2.44977
frozenset({'其他蔬菜', '根茎类蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.023183 置信度: 0.48927 lift值为: 1.914833

标签:数据分析,plt,置信度,值为,商品,lift,frozenset,data
From: https://www.cnblogs.com/eno1/p/17234268.html

相关文章

  • 数据挖掘之商品零售
    商品零售购物篮分析代码一:查看数据特征%matplotlibinlineimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif......
  • 商品零售购物篮分析
    importnumpyasnpimportpandasaspdinputfile=r'E:\sj\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gbk')#读取数据data.inf......
  • 第四周(商品零售购物篮分析)
    查看数据特征#%%importnumpyasnpimportpandasaspdinputfile='./data/GoodsOrder.csv'data=pd.read_csv(inputfile,encoding='gbk')data.info#%%data=......
  • 商品分析(关联规则)
    1#-*-coding:utf-8-*-2"""3CreatedonWedFeb2210:56:39202345@author:admin6"""78#代码8-19importnumpyasnp10impor......
  • 商品的零售购物篮分析
    importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif"]=["SimHei"]plt.rcParams["axes.unicode_minus"]=Fals......
  • 商品数据分析
    importnumpyasnpimportpandasaspdinputfile=r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encodi......
  • 商品零售购物篮分析
    一、背景与挖掘目标购物篮分析是商业领域最前沿、最具挑战性的问题之一,也是许多企业重点研究的问题。购物篮分析是通过发现顾客在一次购买行为中放入购物篮中不同商品之间......
  • 数据分析第8章实践
    importnumpyasnpimportpandasaspdinputfile='C:/Users/Lenore/Desktop/data/GoodsOrder.csv'data=pd.read_csv(inputfile,encoding='gbk')data.info()da......
  • Origin 2022【科学数据分析】中文破解版安装包下载及图文安装教程​
    Origin是由OriginLab公司全新开发的一款科学绘图、数据分析软件,能够为用户提供多样的数据统计、数据处理、数据报告等功能,是全球商业行业、学术界和政府实验室超过50万科......
  • Origin 2021【科学数据分析】中文破解版安装包下载及图文安装教程​
    Origin是由OriginLab公司全新开发的一款科学绘图、数据分析软件,能够为用户提供多样的数据统计、数据处理、数据报告等功能,是全球商业行业、学术界和政府实验室超过50万科......