import numpy as np import pandas as pd inputfile = 'C:/Users/Lenore/Desktop/data/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') data.info() data = data['id'] description = [data.count(),data.min(),data.max()] description =pd.DataFrame(description,index=['Count','Min','Max']).T print('描述性统计结果_3042:\n',np.round(description))
import pandas as pd inputfile = 'C:/Users/Lenore/Desktop/data/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') group = data.groupby(['Goods']).count().reset_index() sorted = group.sort_values('id',ascending=False) print('销量排行前10商品的销量_3042:\n',sorted[:10]) #画条形图展示销量排行前10的商品销量 import matplotlib.pyplot as plt x = sorted[:10]['Goods'] y = sorted[:10]['id'] plt.figure(figsize=(8,4)) plt.barh(x,y) plt.rcParams['font.sans-serif'] = 'SimHei' plt.xlabel('销量') plt.ylabel('商品类别') plt.title('商品的销量TOP10_3042',fontsize=15) plt.savefig('C:/Users/Lenore/Desktop/data/top10.png') plt.show() # 销量排行前10的商品销量占比 data_nums = data.shape[0] for idnex, row in sorted[:10].iterrows(): print(row['Goods'],row['id'],row['id']/data_nums)
import pandas as pd inputfile1 = 'C:/Users/Lenore/Desktop/data/GoodsOrder.csv' inputfile2 = 'C:/Users/Lenore/Desktop/data/GoodsTypes.csv' data= pd.read_csv(inputfile1,encoding='gbk') types = pd.read_csv(inputfile2,encoding='gbk') group = data.groupby(['Goods']).count().reset_index() sort = group.sort_values('id',ascending=False).reset_index() data_nums = data.shape[0] del sort['index'] sort_links = pd.merge(sort,types) #根据类别求和,每个商品类别的总量,并排序 sort_link = sort_links.groupby(['Types']).sum().reset_index() sort_link = sort_link.sort_values('id',ascending=False).reset_index() del sort_link['index'] # 求百分比,然后更换列名,最后输出列文件 sort_link['count'] = sort_link.apply(lambda line:line['id']/data_nums,axis=1) sort_link.rename(columns={'count':'percent'},inplace=True) print('各类别商品的销量及其占比_3042:\n',sort_link) outfile1 = 'C:/Users/Lenore/Desktop/data/percent.csv' sort_link.to_csv(outfile1, index=False, header=True, encoding='gbk') #画饼图展示每类商品的销量占比 import matplotlib.pyplot as plt data = sort_link['percent'] labels = sort_link['Types'] plt.figure(figsize=(8,6)) plt.pie(data,labels=labels, autopct='%1.2f%%') plt.rcParams['font.sans-serif'] ='SimHei' plt.title('每类商品销量占比_3042',fontsize=15) plt.savefig('C:/Users/Lenore/Desktop/data/persent.png') plt.show()
# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件 selected = sort_links.loc[sort_links['Types'] =='非酒精饮料'] child_nums = selected['id'].sum() selected['child_percent'] = selected.apply(lambda line:line['id']/child_nums,axis=1) selected.rename(columns={'id':'count'},inplace=True) print('非酒精饮料内部商品的销量及其占比_3042: \n',selected) outfile2 ='C:/Users/Lenore/Desktop/data/child_percent.csv' sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk') # 画饼图展示非酒精饮品内部各商品的销量占比 import matplotlib.pyplot as plt data = selected['child_percent'] labels = selected['Goods'] plt.figure(figsize=(8,6)) explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3) plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2) plt.rcParams['font.sans-serif'] = 'SimHei' plt.title("非酒精饮料内部各商品的销量占比_3042",fontsize=15) plt.axis('equal') plt.savefig('C:/Users/Lenore/Desktop/data/child_percent.png') plt.show()
# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件 selected = sort_links.loc[sort_links['Types'] =='西点'] child_nums = selected['id'].sum() selected['xidian_percent'] = selected.apply(lambda line:line['id']/child_nums,axis=1) selected.rename(columns={'id':'count'},inplace=True) print('西点内部商品的销量及其占比_3042: \n',selected) outfile2 ='C:/Users/Lenore/Desktop/data/xidian_percent.csv' sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk') # 画饼图展示西点内部各商品的销量占比 import matplotlib.pyplot as plt data = selected['xidian_percent'] labels = selected['Goods'] plt.figure(figsize=(8,6)) explode = (0.05,0.04,0.04,0.05,0.06,0.07,0.03,0.03,0.03,0.02,0.03,0.02,0.02,0.02,0.02,0.08,0.3,0.34,0.38,0.4,0.8) plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2) plt.rcParams['font.sans-serif'] = 'SimHei' plt.title("西点内部各商品的销量占比_3042",fontsize=15) plt.axis('equal') plt.savefig('C:/Users/Lenore/Desktop/data/xidian_percent.png') plt.show()
import pandas as pd inputfile = 'C:/Users/Lenore/Desktop/data/GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') data['Goods'] = data['Goods'].apply(lambda x:','+x) data = data.groupby('id')['Goods'].sum().reset_index() data['Goods'] = data['Goods'].apply(lambda x:[x[1:]]) data_list = list(data['Goods']) data_translation = [] for i in data_list: p = i[0].split(',') data_translation.append(p) print('数据转换结果的前5个元素_3042: \n',data_translation[0:5])
from numpy import * def loadDataSet(): return [['a','c','e'],['b','d'],['b','c'],['a','b','c','d'], ['a','b'],['b','c'],['a','b'],['a','b','c','e'], ['a','b','c'],['a','c','e']] def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if not [item] in C1: C1.append([item]) C1.sort() #映射为frozenset唯一性的,可使用其构造字典 return list(map(frozenset,C1)) # 从候选K项集到频繁K项集 (支持度计算 ) def scanD(D,Ck,minSupport): ssCnt = {} for tid in D: #遍历数据集 for can in Ck: #遍历候选项 if can.issubset(tid): #判断候选项中是否含数据集的各项 if not can in ssCnt: ssCnt[can] = 1 # 不含设为1 else: ssCnt[can] += 1 #有则计数加1 numItems = float(len(D)) # 数据集大小 retList = [] # L1初始化 supportData = {} #记录候选项中各个数据的支持度 for key in ssCnt: support = ssCnt[key] / numItems # 计算支持度 if support >= minSupport: retList.insert(0,key) # 满足条件加入L1中 supportData[key] = support return retList,supportData def calSupport(D,Ck,min_support): dict_sup ={} for i in D: for j in Ck: if j.issubset(i): if not j in dict_sup: dict_sup[j] = 1 else: dict_sup[j] += 1 sumCount = float(len(D)) supportData = {} relist = [] for i in dict_sup: temp_sup = dict_sup[i] / sumCount if temp_sup >= min_support: relist.append(i) #此处可设置返回全部的支持度数据(或者频繁项集的支持度数据) supportData[i]= temp_sup return relist,supportData #改进剪枝算法 def aprioriGen(Lk,k): retList = [] lenLk =len(Lk) for i in range(lenLk): for j in range(i + 1,lenLk):#两两组合遍历 L1 = list(Lk[i])[:k - 2] L2 = list(Lk[j])[:k - 2] L1.sort() L2.sort() if L1 == L2: #前k-1项相等,则可相乘,这样可防止重复项出现 # 进行剪枝 (a1为k项集中的一个元素,b为它的所有k-1项子集 ) a = Lk[i] | Lk[j] # a为frozenset()集合 a1 = list(a) b = [] # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中 for q in range(len(a1)): t= [a1[q]] tt = frozenset(set(a1) - set(t)) b.append(tt) t=0 for w in b: #当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除 if w in Lk: t += 1 if t == len(b): retList.append(b[0] | b[1]) return retList def apriori(dataSet,minSupport=0.2): #前3条语句是对计算查找单个元素中的频繁项集 C1 = createC1(dataSet) D = list(map(set,dataSet)) # 使用list()转换为列表 L1,supportData = calSupport(D,C1,minSupport) L = [L1] # 加列表框,使得1项集为一个单独元素 k=2 while (len(L[k - 2]) > 0): # 是否还有候选集 Ck = aprioriGen(L[k - 2],k) Lk, supK = scanD(D, Ck, minSupport) # scan DB to get Lk supportData.update(supK) # 把supk的键值对添加到supportData里 L.append(Lk) #L最后一个值为空集 k += 1 del L[-1] #删除最后一个空集 return L,supportData # L为频繁项集,为一个列表,1,2,3项集分别为一个元素 # 生成集合的所有子集 def getSubset(fromList,toList): for i in range(len(fromList)): t = [fromList[i]] tt = frozenset(set(fromList) - set(t)) if not tt in toList: toList.append(tt) tt = list(tt) if len(tt) > 1: getSubset(tt,toList) def calcConf(freqSet,H,supportData,ruleList,minConf=0.7): for conseq in H: # 遍历H中的所有项集并计算它们的可信度值 conf = supportData[freqSet] / supportData[freqSet - conseq] #可信度计算,结合支持度数据 # 提升度lift计算lift = p(a & b) / p(a)*p(b) lift = supportData[freqSet] / (supportData[conseq] * supportData [freqSet - conseq]) if conf >= minConf and lift > 1: print(freqSet - conseq,'-->',conseq,'支持度', round(supportData[freqSet],6), '置信度:',round(conf,6),'lift值为:',round(lift,6)) ruleList.append((freqSet - conseq,conseq, conf)) # 生成规则 def gen_rule(L,supportData,minConf=0.7): bigRuleList = [] for i in range(1,len(L)): # 从二项集开始计算 # 求该三项集的所有非空子集,1项集,2项集,直到K-1项集,用H1表示,为list类型,里面为frozenset类型, for freqSet in L[i]: # freqSet为所有的k项集 H1 = list(freqSet) all_subset = []# 生成所有的子集 getSubset(H1, all_subset) calcConf(freqSet, all_subset, supportData, bigRuleList, minConf) return bigRuleList print('输出关联规则模型结果_3042: ') if __name__ == '__main__': dataSet = data_translation L, supportData = apriori(dataSet, minSupport=0.02) rule = gen_rule(L,supportData,minConf=0.35)
标签:数据分析,sort,plt,selected,实践,supportData,csv,data From: https://www.cnblogs.com/lnxlaila/p/17232993.html