首页 > 其他分享 >数据挖掘之商品零售

数据挖掘之商品零售

时间:2023-03-19 20:56:20浏览次数:45  
标签:sort plt selected 零售 商品 supportData 数据挖掘 csv data

商品零售购物篮分析

代码一:查看数据特征

%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
data=pd.read_csv('./data/GoodsOrder.csv',encoding='gbk')
data.info()
description=[data.count(),data.min(),data.max()]
description=pd.DataFrame(description,index=['Count','Min','Max'])
print("-"*40)
print('描述性统计结果为:\n',np.round(description))

 

 

 

代码二:分析热销商品

# 对商品进行分类汇总
data=pd.read_csv('./data/GoodsOrder.csv',encoding='gbk')
Top10 = data.groupby(['Goods']).count().reset_index()  
Top10 = Top10.sort_values('id',ascending=False)

x = Top10[:10]['Goods'][::-1]
y = Top10[:10]['id'][::-1]
plt.figure(figsize=(18,12), dpi=80)
plt.barh(x, y, height=0.5, color='#6699CC')
plt.xlabel('销量',size=16)
plt.ylabel('商品类别',size=16) 
plt.title('商品的销量TOP10', size=24)
plt.xticks(size=16) # x轴字体大小调整
plt.yticks(size=16) # y轴字体大小调整
plt.show()

 

 

 

代码三:销量排行前10商品的销量占比

data_nums = data.shape[0]
for index, row in Top10[:10].iterrows():
    print(row['Goods'],row['id'],row['id']/data_nums)

 

 

inputfile1 = './data/GoodsOrder.csv'
inputfile2 = './data/GoodsTypes.csv'
 
# 读入数据
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk') 

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()

data_nums = data.shape[0]  # 总量
del sort['index']

# 合并两个datafreame,on='Goods'
sort_links = pd.merge(sort,types)

# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)

# 保存结果
outfile1 = './percent.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')

 

 

data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(7, 7))
plt.pie(data,labels=labels,autopct='%1.2f%%',startangle=90)
plt.title('每类商品销量占比')
# plt.savefig('./persent.png')  # 把图片以.png格式保存
plt.show()

 

 

代码四:分析非酒精商品销量及占比

# 先筛选“非酒精饮料”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '非酒精饮料']
# 对所有的“非酒精饮料”求和
child_nums = selected['id'].sum()
# 求百分比
selected.loc[:,'child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)
selected.rename(columns = {'id':'count'},inplace = True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2 = './child_percent.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

 

 

data = selected['child_percent']
labels = selected['Goods']

plt.figure(figsize = (8,6))
# 设置每一块分割出的间隙大小
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
# 设置标题
plt.title("非酒精饮料内部各商品的销量占比")
# 把单位长度都变的一样
plt.axis('equal')
 # 保存图形
# plt.savefig('./child_persent.png')
plt.show()

 

 

代码五:数据转换

inputfile = './data/GoodsOrder.csv'
data = pd.read_csv(inputfile,encoding = 'gbk')

# 根据id对“Goods”列合并,并使用“,”将各商品隔开
data['Goods'] = data['Goods'].apply(lambda x:','+x)
data = data.groupby(data['id'])['Goods'].sum().reset_index()

# 对合并的商品列转换数据格式
data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
data_list = list(data['Goods'])

# 分割商品名为每个元素
data_translation = []
for i in data_list:
    p = i[0].split(',')
    data_translation.append(p)
print('数据转换结果的前5个元素:\n', data_translation[0:5])

 

 

 

代码六:建模

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))   

  # 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData

def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
            # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData

# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)

def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
 
if __name__ == '__main__':
    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)

 

 

代码七:西点内部销量及其占比

import seaborn as sns
#西点
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
# 绘制西点类别中不同商品占比的条形图
plt.figure(figsize=(10, 5))
sns.barplot(x=list(selected["id"]), y=list(selected["Goods"]))
plt.xlabel("商品销量")
plt.ylabel("商品类别")
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点类别中不同商品的销量3142")
plt.show()

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
child_nums = selected['id'].sum()  # 对所有的“西点”求和
selected['child_percent_xidian'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比:\n',selected)
outfile3 = "./data/child_percent_xidian.csv"
sort_link.to_csv(outfile3,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示西点内部各商品的销量占比
data = selected['child_percent_xidian']
labels = selected['Goods']
plt.figure(figsize = (8,6))  # 设置画布大小
explode = (0.05,0.04,0.04,0.05,0.06,0.07,0.03,0.03,0.03,0.02,0.03,0.02,0.02,0.02,0.02,0.08,0.3,0.34,0.38,0.4,0.8)  # 设置每一块分割出的间隙大小
plt.pie(data,explode = explode,labels = labels,autopct = '%1.2f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点内部各商品的销量占比3142",fontdict={'size': 20})  # 设置标题
plt.axis('equal')
plt.show()  # 展示图形

 

 

 

 

 

 

 

标签:sort,plt,selected,零售,商品,supportData,数据挖掘,csv,data
From: https://www.cnblogs.com/zhulol/p/17234237.html

相关文章

  • 商品零售购物篮分析
    importnumpyasnpimportpandasaspdinputfile=r'E:\sj\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encoding='gbk')#读取数据data.inf......
  • 第四周(商品零售购物篮分析)
    查看数据特征#%%importnumpyasnpimportpandasaspdinputfile='./data/GoodsOrder.csv'data=pd.read_csv(inputfile,encoding='gbk')data.info#%%data=......
  • 商品分析(关联规则)
    1#-*-coding:utf-8-*-2"""3CreatedonWedFeb2210:56:39202345@author:admin6"""78#代码8-19importnumpyasnp10impor......
  • 商品的零售购物篮分析
    importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltplt.rcParams["font.sans-serif"]=["SimHei"]plt.rcParams["axes.unicode_minus"]=Fals......
  • 商品数据分析
    importnumpyasnpimportpandasaspdinputfile=r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'#输入的数据文件data=pd.read_csv(inputfile,encodi......
  • 商品零售购物篮分析
    一、背景与挖掘目标购物篮分析是商业领域最前沿、最具挑战性的问题之一,也是许多企业重点研究的问题。购物篮分析是通过发现顾客在一次购买行为中放入购物篮中不同商品之间......
  • Python爬虫采集商品评价信息--京东
    1.数据采集逻辑在进行数据采集之前,明确哪些数据为所需,制定数据Schema为爬取工作做出要求,并根据数据Schema制定出有针对性的爬取方案和采集逻辑。  2.数据Schema3.......
  • 第八章 商品零售购物篮分析
     #代码8-1查看数据特征importnumpyasnpimportpandasaspdinputfile="E:\\anaconda3\\jupyterFile\\数据分析\\data\\GoodsOrder.csv"#输入的数据文件dat......
  • mysql 查询1个订单 存在3件及以上商品一样的其它订单
    1、需求要查1个订单存在3件及以上商品一样的其它订单2、数据表表:order_sku字段:order_code,skuCREATETABLE`order_sku`(`id`int(10)NOTNULL,`order_c......
  • 淘宝/天猫商品详情数据接口 API调用示例 参数说明
    item_get-获得淘宝商品详情请求示例#coding:utf-8"""Compatibleforpython2.xandpython3.xrequirement:pipinstallrequests"""from__future__importprin......