首页 > 其他分享 >商品数据分析

商品数据分析

时间:2023-03-19 19:22:50浏览次数:53  
标签:数据分析 置信度 -- 值为 商品 lift frozenset data

import numpy as np
import pandas as pd

inputfile = r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'   # 输入的数据文件
data = pd.read_csv(inputfile,encoding = 'gbk')  # 读取数据
data .info()  # 查看数据属性

data = data['id']
description = [data.count(),data.min(), data.max()]  # 依次计算总数、最小值、最大值
description = pd.DataFrame(description, index = ['Count','Min', 'Max']).T  # 将结果存入数据框
print('描述性统计结果:\n',np.round(description))  # 输出结果

inputfile1 = r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'
inputfile2 = r'C:\Users\admin\Desktop\新建文件夹\GoodsTypes.csv'
data = pd.read_csv(inputfile1,encoding = 'gbk')
types = pd.read_csv(inputfile2,encoding = 'gbk')  # 读入数据

group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values('id',ascending = False).reset_index()
data_nums = data.shape[0]  # 总量
del sort['index']

sort_links = pd.merge(sort,types)  # 合并两个datafreame 根据type
# 根据类别求和,每个商品类别的总量,并排序
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending = False).reset_index()
del sort_link['index']  # 删除“index”列

# 求百分比,然后更换列名,最后输出到文件
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns = {'count':'percent'},inplace = True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1 = r'C:\Users\admin\Desktop\新建文件夹\percent1.csv'
sort_link.to_csv(outfile1,index = False,header = True,encoding='gbk')  # 保存结果
# 代码8-4 西点内部商品的销量及其占比

# 先筛选“西点”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '西点']  # 挑选商品类别为“西点”并排序
child_nums = selected['id'].sum()  # 对所有的“西点”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('西点内部商品的销量及其占比:\n',selected)
outfile2 = r'C:\Users\admin\Desktop\新建文件夹\child_percent1.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示西点内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (15,9))  # 设置画布大小 
#explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1)  # 设置每一块分割出的间隙大小
plt.pie(data,labels = labels,autopct = '%1.3f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("西点内部各商品的销量占比 number 3045")  # 设置标题
plt.axis('equal')
plt.legend()
plt.savefig(r'C:\Users\admin\Desktop\新建文件夹\xidian.png')  # 保存图形
plt.show()  # 展示图形

# 代码8-4 果蔬内部商品的销量及其占比

# 先筛选“果蔬”类型的商品,然后求百分比,然后输出结果到文件。
selected = sort_links.loc[sort_links['Types'] == '果蔬']  # 挑选商品类别为“果蔬”并排序
child_nums = selected['id'].sum()  # 对所有的“果蔬”求和
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis = 1)  # 求百分比
selected.rename(columns = {'id':'count'},inplace = True)
print('果蔬内部商品的销量及其占比:\n',selected)
outfile2 = r'C:\Users\admin\Desktop\新建文件夹\child_percent1.csv'
sort_link.to_csv(outfile2,index = False,header = True,encoding='gbk')  # 输出结果

# 画饼图展示果蔬内部各商品的销量占比
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize = (12,9))  # 设置画布大小 
#explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1)  # 设置每一块分割出的间隙大小
plt.pie(data,labels = labels,autopct = '%1.3f%%',
        pctdistance = 1.1,labeldistance = 1.2)
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title("果蔬内部各商品的销量占比 number 3045")  # 设置标题
plt.axis('equal')
plt.legend()
plt.savefig(r'C:\Users\admin\Desktop\新建文件夹\guoshu.png')  # 保存图形
plt.show()  # 展示图形

# -*- coding: utf-8 -*-

# 代码8-6 构建关联规则模型

from numpy import *
 
def loadDataSet():
    return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
            ['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]
 
def createC1(dataSet):
    C1 = []
    for transaction in dataSet:
        for item in transaction:
            if not [item] in C1:
                C1.append([item])
    C1.sort()
    # 映射为frozenset唯一性的,可使用其构造字典
    return list(map(frozenset, C1))     
    
# 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
    ssCnt = {}
    for tid in D:   # 遍历数据集
        for can in Ck:  # 遍历候选项
            if can.issubset(tid):  # 判断候选项中是否含数据集的各项
                if not can in ssCnt:
                    ssCnt[can] = 1  # 不含设为1
                else:
                    ssCnt[can] += 1  # 有则计数加1
    numItems = float(len(D))  # 数据集大小
    retList = []  # L1初始化
    supportData = {}  # 记录候选项中各个数据的支持度
    for key in ssCnt:
        support = ssCnt[key] / numItems  # 计算支持度
        if support >= minSupport:
            retList.insert(0, key)  # 满足条件加入L1中
            supportData[key] = support  
    return retList, supportData
 
def calSupport(D, Ck, min_support):
    dict_sup = {}
    for i in D:
        for j in Ck:
            if j.issubset(i):
                if not j in dict_sup:
                    dict_sup[j] = 1
                else:
                    dict_sup[j] += 1
    sumCount = float(len(D))
    supportData = {}
    relist = []
    for i in dict_sup:
        temp_sup = dict_sup[i] / sumCount
        if temp_sup >= min_support:
            relist.append(i)
# 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
            supportData[i] = temp_sup
    return relist, supportData
 
# 改进剪枝算法
def aprioriGen(Lk, k):
    retList = []
    lenLk = len(Lk)
    for i in range(lenLk):
        for j in range(i + 1, lenLk):  # 两两组合遍历
            L1 = list(Lk[i])[:k - 2]
            L2 = list(Lk[j])[:k - 2]
            L1.sort()
            L2.sort()
            if L1 == L2:  # 前k-1项相等,则可相乘,这样可防止重复项出现
                # 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
                a = Lk[i] | Lk[j]  # a为frozenset()集合
                a1 = list(a)
                b = []
                # 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
                for q in range(len(a1)):
                    t = [a1[q]]
                    tt = frozenset(set(a1) - set(t))
                    b.append(tt)
                t = 0
                for w in b:
                    # 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
                    if w in Lk:
                        t += 1
                if t == len(b):
                    retList.append(b[0] | b[1])
    return retList

def apriori(dataSet, minSupport=0.2):
# 前3条语句是对计算查找单个元素中的频繁项集
    C1 = createC1(dataSet)
    D = list(map(set, dataSet))  # 使用list()转换为列表
    L1, supportData = calSupport(D, C1, minSupport)
    L = [L1]  # 加列表框,使得1项集为一个单独元素
    k = 2
    while (len(L[k - 2]) > 0):  # 是否还有候选集
        Ck = aprioriGen(L[k - 2], k)
        Lk, supK = scanD(D, Ck, minSupport)  # scan DB to get Lk
        supportData.update(supK)  # 把supk的键值对添加到supportData里
        L.append(Lk)  # L最后一个值为空集
        k += 1
    del L[-1]  # 删除最后一个空集
    return L, supportData  # L为频繁项集,为一个列表,1,2,3项集分别为一个元素

# 生成集合的所有子集
def getSubset(fromList, toList):
    for i in range(len(fromList)):
        t = [fromList[i]]
        tt = frozenset(set(fromList) - set(t))
        if not tt in toList:
            toList.append(tt)
            tt = list(tt)
            if len(tt) > 1:
                getSubset(tt, toList)
 
def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
    for conseq in H:  #遍历H中的所有项集并计算它们的可信度值
        conf = supportData[freqSet] / supportData[freqSet - conseq]  # 可信度计算,结合支持度数据
        # 提升度lift计算lift = p(a & b) / p(a)*p(b)
        lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq])
 
        if conf >= minConf and lift > 1:
            print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet], 6), '置信度:', round(conf, 6),
                  'lift值为:', round(lift, 6))
            ruleList.append((freqSet - conseq, conseq, conf))
 
# 生成规则
def gen_rule(L, supportData, minConf = 0.7):
    bigRuleList = []
    for i in range(1, len(L)):  # 从二项集开始计算
        for freqSet in L[i]:  # freqSet为所有的k项集
            # 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
            H1 = list(freqSet)
            all_subset = []
            getSubset(H1, all_subset)  # 生成所有的子集
            calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
    return bigRuleList
  
if __name__ == '__main__':
    import pandas as pd
    inputfile=r'C:\Users\admin\Desktop\新建文件夹\GoodsOrder.csv'
    data = pd.read_csv(inputfile,encoding = 'gbk')

    # 根据id对“Goods”列合并,并使用“,”将各商品隔开
    data['Goods'] = data['Goods'].apply(lambda x:','+x)
    data = data.groupby('id').sum().reset_index()

    # 对合并的商品列转换数据格式
    data['Goods'] = data['Goods'].apply(lambda x :[x[1:]])
    data_list = list(data['Goods'])

    # 分割商品名为每个元素
    data_translation = []
    for i in data_list:
        p = i[0].split(',')
        data_translation.append(p)
    print('数据转换结果的前5个元素:\n', data_translation[0:5])

    dataSet = data_translation
    L, supportData = apriori(dataSet, minSupport = 0.02)
    rule = gen_rule(L, supportData, minConf = 0.35)

数据转换结果的前5个元素:
[['柑橘类水果', '人造黄油', '即食汤', '半成品面包'], ['咖啡', '热带水果', '酸奶'], ['全脂牛奶'], ['奶油乳酪', '肉泥', '仁果类水果', '酸奶'], ['炼乳', '长面包', '其他蔬菜', '全脂牛奶']]
frozenset({'水果/蔬菜汁'}) --> frozenset({'全脂牛奶'}) 支持度 0.02664 置信度: 0.368495 lift值为: 1.44216
frozenset({'人造黄油'}) --> frozenset({'全脂牛奶'}) 支持度 0.024199 置信度: 0.413194 lift值为: 1.617098
frozenset({'仁果类水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.030097 置信度: 0.397849 lift值为: 1.557043
frozenset({'牛肉'}) --> frozenset({'全脂牛奶'}) 支持度 0.021251 置信度: 0.405039 lift值为: 1.58518
frozenset({'冷冻蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.020437 置信度: 0.424947 lift值为: 1.663094
frozenset({'本地蛋类'}) --> frozenset({'其他蔬菜'}) 支持度 0.022267 置信度: 0.350962 lift值为: 1.813824
frozenset({'黄油'}) --> frozenset({'其他蔬菜'}) 支持度 0.020031 置信度: 0.361468 lift值为: 1.868122
frozenset({'本地蛋类'}) --> frozenset({'全脂牛奶'}) 支持度 0.029995 置信度: 0.472756 lift值为: 1.850203
frozenset({'黑面包'}) --> frozenset({'全脂牛奶'}) 支持度 0.025216 置信度: 0.388715 lift值为: 1.521293
frozenset({'糕点'}) --> frozenset({'全脂牛奶'}) 支持度 0.033249 置信度: 0.373714 lift值为: 1.462587
frozenset({'酸奶油'}) --> frozenset({'其他蔬菜'}) 支持度 0.028876 置信度: 0.402837 lift值为: 2.081924
frozenset({'猪肉'}) --> frozenset({'其他蔬菜'}) 支持度 0.021657 置信度: 0.375661 lift值为: 1.941476
frozenset({'酸奶油'}) --> frozenset({'全脂牛奶'}) 支持度 0.032232 置信度: 0.449645 lift值为: 1.759754
frozenset({'猪肉'}) --> frozenset({'全脂牛奶'}) 支持度 0.022166 置信度: 0.38448 lift值为: 1.504719
frozenset({'根茎类蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.048907 置信度: 0.448694 lift值为: 1.756031
frozenset({'根茎类蔬菜'}) --> frozenset({'其他蔬菜'}) 支持度 0.047382 置信度: 0.434701 lift值为: 2.246605
frozenset({'凝乳'}) --> frozenset({'全脂牛奶'}) 支持度 0.026131 置信度: 0.490458 lift值为: 1.919481
frozenset({'热带水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.042298 置信度: 0.403101 lift值为: 1.577595
frozenset({'柑橘类水果'}) --> frozenset({'全脂牛奶'}) 支持度 0.030503 置信度: 0.36855 lift值为: 1.442377
frozenset({'黄油'}) --> frozenset({'全脂牛奶'}) 支持度 0.027555 置信度: 0.497248 lift值为: 1.946053
frozenset({'酸奶'}) --> frozenset({'全脂牛奶'}) 支持度 0.056024 置信度: 0.401603 lift值为: 1.571735
frozenset({'其他蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.074835 置信度: 0.386758 lift值为: 1.513634
frozenset({'全脂牛奶', '酸奶'}) --> frozenset({'其他蔬菜'}) 支持度 0.022267 置信度: 0.397459 lift值为: 2.054131
frozenset({'其他蔬菜', '酸奶'}) --> frozenset({'全脂牛奶'}) 支持度 0.022267 置信度: 0.512881 lift值为: 2.007235
frozenset({'全脂牛奶', '根茎类蔬菜'}) --> frozenset({'其他蔬菜'}) 支持度 0.023183 置信度: 0.474012 lift值为: 2.44977
frozenset({'其他蔬菜', '根茎类蔬菜'}) --> frozenset({'全脂牛奶'}) 支持度 0.023183 置信度: 0.48927 lift值为: 1.914833

 

标签:数据分析,置信度,--,值为,商品,lift,frozenset,data
From: https://www.cnblogs.com/3045qqq/p/17218316.html

相关文章