首页 > 其他分享 >财政收入影响因数分析及预测

财政收入影响因数分析及预测

时间:2023-03-05 23:11:07浏览次数:32  
标签:plt 预测 因数 train 财政收入 np new data reg

1. 描述性统计分析

# 对各属性进行描述性统计分析
def statisticAnalysis():
    inputfile = '../data/data.csv'  # 输出的数据文件
    data = pd.read_csv(inputfile)  # 读数据
    # 最小值、最大值、均值、标准差
    description = [data.min(), data.max(), data.mean(), data.std()]

    # 将结果存入数据框
    description = pd.DataFrame(description, index=["Min", "Max", "Mean", "STD"]).T
    print("描述性统计结果:\n", np.round(description, 2))  # 保留两位
2.相关系数矩阵和热力图
# 求解原始数据的Pearson相关系数矩阵
def correlationCoefficientMatrix(data):
    inputfile = '../data/data.csv'  # 输出的数据文件
    data = pd.read_csv(inputfile)  # 读数据
    corr = data.corr(method='pearson')  # 计算相关系数矩阵
    print("相关系数矩阵为:\n", np.round(corr, 2))  # 保留两位
    return corr

# 绘制相关性热力图
def thermodynamic(corr):
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus']=False
    plt.subplots(figsize=(10, 10))
    sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues_r")
    plt.title("相关性热力图 3105")
    plt.show()
    plt.close()

3.构建模型并预测

# 构建灰色预测模型并预测
def grey():
    sys.path.append("D:/作业/数据挖掘/tmp")

    inputfile1 = "../data/new_reg_data.csv"
    inputfile2 = "../data/data.csv"
    new_reg_data = pd.read_csv(inputfile1)
    data = pd.read_csv(inputfile2)
    new_reg_data.index = range(1994, 2014)
    new_reg_data.loc[2014] = None
    new_reg_data.loc[2015] = None
    cols = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    for i in cols:
        f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0]
        new_reg_data.loc[2014, i] = f(len(new_reg_data)-1)   # 2014年预测结果
        new_reg_data.loc[2015, i] = f(len(new_reg_data))  # 2015年预测结果
        new_reg_data[i] = new_reg_data[i].round(2)

    outputfile = '../tmp/new_reg_data_GM11.xls'            # 灰色预测后保存路径
    y = list(data['y'].values)
    y.extend([np.nan, np.nan])
    new_reg_data['y'] = y
    new_reg_data.to_excel(outputfile)
    print("预测结果为:\n",new_reg_data.loc[2014:2015,:])

# 构建支持向量回归预测模型
def SVR():
    from sklearn.svm import LinearSVR

    inputfile = '../tmp/new_reg_data_GM11.xls'
    data = pd.read_excel(inputfile)
    feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
    data.index = range(1994, 2016)
    data_train = data.loc[range(1994, 2014)].copy()
    data_mean = data_train.mean()
    data_std = data_train.std()
    data_train = (data_train - data_mean)/data_std
    x_train = data_train[feature].to_numpy()
    y_train = data_train['y'].to_numpy()

    linearsvr = LinearSVR()
    linearsvr.fit(x_train, y_train)
    x = ((data[feature] - data_mean[feature])/data_std[feature]).to_numpy()

    data[u'y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
    # outputfile = '../tmp/new_reg_data_GM11_revenue.xls'
    # data.to_excel(outputfile)

    print("真实值与预测值分别为:\n",data[['y', 'y_pred']])

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
    plt.rcParams['axes.unicode_minus'] = False

    fig = data[['y', 'y_pred']].plot(subplots = True,style=['b-o', 'r-*'])
    plt.title("3105")
    plt.show()

 

GM(1,1)

 1 def GM11(x0):    # 自定义灰色预测函数
 2   import numpy as np
 3   x1 = x0.cumsum()    # 1-AGO序列
 4   z1 = (x1[:len(x1)-1] + x1[1:])/2.0   # 紧邻均值(MEAN)生成序列
 5   z1 = z1.reshape((len(z1),1))
 6   B = np.append(-z1, np.ones_like(z1), axis = 1)
 7   Yn = x0[1:].reshape((len(x0)-1, 1))
 8   [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn)   # 计算参数
 9   f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2))   # 还原值
10   delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
11   C = delta.std()/x0.std()
12   P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
13   return f, a, b, x0[0], C, P   # 返回灰色预测函数、a、b、首项、方差比、小残差概率

 

完整代码:

  1 import pandas as pd
  2 import numpy as np
  3 import matplotlib.pyplot as plt
  4 import seaborn as sns
  5 import sys
  6 from GM11 import GM11
  7 
  8 
  9 inputfile = '../data/data.csv'  # 输出的数据文件
 10 data = pd.read_csv(inputfile)  # 读数据
 11 
 12 
 13 # 对各属性进行描述性统计分析
 14 def statisticAnalysis(data):
 15     # 最小值、最大值、均值、标准差
 16     description = [data.min(), data.max(), data.mean(), data.std()]
 17 
 18     # 将结果存入数据框
 19     description = pd.DataFrame(description, index=["Min", "Max", "Mean", "STD"]).T
 20     print("描述性统计结果:\n", np.round(description, 2))  # 保留两位
 21 
 22 
 23 # 求解原始数据的Pearson相关系数矩阵
 24 def correlationCoefficientMatrix(data):
 25     corr = data.corr(method='pearson')  # 计算相关系数矩阵
 26     print("相关系数矩阵为:\n", np.round(corr, 2))  # 保留两位
 27     return corr
 28 
 29 
 30 # 绘制相关性热力图
 31 def thermodynamic(corr):
 32     plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
 33     plt.rcParams['axes.unicode_minus']=False
 34     plt.subplots(figsize=(10, 10))
 35     sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues_r")
 36     plt.title("相关性热力图 3105")
 37     plt.show()
 38     plt.close()
 39 
 40 
 41 # 构建灰色预测模型并预测
 42 def grey():
 43     sys.path.append("D:/作业/数据挖掘/tmp")
 44 
 45     inputfile1 = "../data/new_reg_data.csv"
 46     inputfile2 = "../data/data.csv"
 47     new_reg_data = pd.read_csv(inputfile1)
 48     data = pd.read_csv(inputfile2)
 49     new_reg_data.index = range(1994, 2014)
 50     new_reg_data.loc[2014] = None
 51     new_reg_data.loc[2015] = None
 52     cols = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
 53     for i in cols:
 54         f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0]
 55         new_reg_data.loc[2014, i] = f(len(new_reg_data)-1)   # 2014年预测结果
 56         new_reg_data.loc[2015, i] = f(len(new_reg_data))  # 2015年预测结果
 57         new_reg_data[i] = new_reg_data[i].round(2)
 58 
 59     outputfile = '../tmp/new_reg_data_GM11.xls'            # 灰色预测后保存路径
 60     y = list(data['y'].values)
 61     y.extend([np.nan, np.nan])
 62     new_reg_data['y'] = y
 63     new_reg_data.to_excel(outputfile)
 64     print("预测结果为:\n",new_reg_data.loc[2014:2015,:])
 65 
 66 # 构建支持向量回归预测模型
 67 def SVR():
 68     from sklearn.svm import LinearSVR
 69 
 70     inputfile = '../tmp/new_reg_data_GM11.xls'
 71     data = pd.read_excel(inputfile)
 72     feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
 73     data.index = range(1994, 2016)
 74     data_train = data.loc[range(1994, 2014)].copy()
 75     data_mean = data_train.mean()
 76     data_std = data_train.std()
 77     data_train = (data_train - data_mean)/data_std
 78     x_train = data_train[feature].to_numpy()
 79     y_train = data_train['y'].to_numpy()
 80 
 81     linearsvr = LinearSVR()
 82     linearsvr.fit(x_train, y_train)
 83     x = ((data[feature] - data_mean[feature])/data_std[feature]).to_numpy()
 84 
 85     data[u'y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
 86     # outputfile = '../tmp/new_reg_data_GM11_revenue.xls'
 87     # data.to_excel(outputfile)
 88 
 89     print("真实值与预测值分别为:\n",data[['y', 'y_pred']])
 90 
 91     plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
 92     plt.rcParams['axes.unicode_minus'] = False
 93 
 94     fig = data[['y', 'y_pred']].plot(subplots = True,style=['b-o', 'r-*'])
 95     plt.title("3105")
 96     plt.show()
 97 
 98 
 99 statisticAnalysis(data)
100 corr = correlationCoefficientMatrix(data)
101 thermodynamic(corr)
102 
103 grey()
104 
105 SVR()

 

 

 

 

 

 

 

 

 

标签:plt,预测,因数,train,财政收入,np,new,data,reg
From: https://www.cnblogs.com/lwqbk/p/17182150.html

相关文章

  • 财政预测
    #预测财政收入,2014、2015(y)神经网络,用到data_1importosimportnumpyasnpimportpandasaspdfromsklearn.linear_modelimportLassoLarsfromsklearn.linear_m......
  • 财政收入影响因素分析及预测
    一、财政收入影响因素分析描述性统计结果: importnumpyasnpimportpandasaspdinputfile='C:/Users/86133/Documents/WeChatFiles/wxid_ou51tgtht1bz22/FileStorag......
  • 预测财政
    #预测财政收入,2014、2015(y)神经网络,用到data_1importosimportnumpyasnpimportpandasaspdfromsklearn.linear_modelimportLassoLarsfromsklearn.linear_m......
  • 灰色预测(财政收入影响因素分析及预测)
    #-*-coding:utf-8-*-defGM11(x0):#自定义灰色预测函数importnumpyasnpx1=x0.cumsum()#1-AGO序列z1=(x1[:len(x1)-1]+x1[1:])/2.0#紧邻均值(ME......
  • 财政收入影响因素分析及预测
    importnumpyasnpimportpandasaspdinputfile='D:\data.csv'data=pd.read_csv(inputfile)#描述性统计分析#依次计算最小值、最大值、均值、标准差description=......
  • 财政收入影响因素分析及预测
    #描述性统计分析和相关系数矩阵importpandasaspdimportnumpyasnpinputfile='D:\大三下\大数据实验课\demo\data.csv'#输入数据的文件data=pd.read_csv(inputfil......
  • 灰色预测模型
    importmatplotlib.pyplotaspltimportpandasaspdimportnumpyasnpfromsklearn.linear_modelimportLassodata=pd.read_csv('./data/data.csv')lasso=Lasso(10......
  • 财政预测
    importnumpyasnpimportpandasaspdinputfile='E:\python数据分析\data.csv'#输入的数据文件data=pd.read_csv(inputfile)#读取数据#相关性分析corr......
  • 财政预测
    importnumpyasnpimportpandasaspdplt.rcParams['font.sans-serif']=['SimHei']#解决中文显示问题plt.rcParams['axes.unicode_minus']=False#解决中......
  • python 财务预测
    importnumpyasnpimportpandasaspdfromsklearn.linear_modelimportLassoinputfile1='E:/data/data.csv'data=pd.read_csv(inputfile1)lasso=Lasso(1000)l......