import numpy as np import pandas as pd from sklearn.linear_model import Lasso inputfile1 = 'E:/data/data.csv' data=pd.read_csv(inputfile1) lasso=Lasso(1000) lasso.fit(data.iloc[:,0:13],data['y']) print('相关系数:',np.round(lasso.coef_,5)) print('相关系数非0个数为:',np.sum(lasso.coef_!=0)) mask=lasso.coef_!=0 print('相关系数是否是0:',mask) mask=np.append(mask,True) outputfile='E:/data/new_reg_data.csv' new_reg_data = data.iloc[:,mask] new_reg_data.to_csv(outputfile) print('输出数据维度:',new_reg_data.shape)
import sys # sys.path.append('../code') # 设置路径 import numpy as np import pandas as pd from GM11 import GM11 # 引入自编的灰色预测函数 inputfile1 = 'E:/data/new_reg_data.csv' # 输入的数据文件 inputfile2 = 'E:/data/data.csv' # 输入的数据文件 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 data = pd.read_csv(inputfile2) # 读取总的数据 new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None new_reg_data.loc[2016] = None l = ['x1', 'x3','x4', 'x5', 'x6', 'x7', 'x8','x13'] for i in l: f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] new_reg_data.loc[2014,i] = f(len(new_reg_data)-2) # 2014年预测结果 new_reg_data.loc[2015,i] = f(len(new_reg_data)-1)# 2015年预测结果 new_reg_data.loc[2016,i] = f(len(new_reg_data)) new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 outputfile = 'E:/data/new_reg_data_GM11_2.xls' # 灰色预测后保存的路径 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 y.extend([np.nan,np.nan,np.nan]) new_reg_data['y'] = y new_reg_data.to_excel(outputfile) # 结果输出 print('预测结果为:\n',new_reg_data.loc[2014:2016,:]) # 预测结果展示
import matplotlib.pyplot as plt from sklearn.svm import LinearSVR inputfile = 'E:/data/new_reg_data_GM11_2.xls' # 灰色预测后保存的路径 data = pd.read_excel(inputfile) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 data_train=data.iloc[0:20,:] data_train.head() data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean) / data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 data_train[feature] linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train,y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] outputfile = 'E:/data/new_reg_data_GM11_revenue_22.xls' # SVR预测后保存的结果 data.to_excel(outputfile) print('真实值与预测值分别为:\n',data[['y','y_pred']]) fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 plt.xlabel('2020310143011') plt.show()
标签:loc,财务,python,train,import,new,data,reg,预测 From: https://www.cnblogs.com/jiujiuwawa/p/17181623.html