import numpy as np import pandas as pd inputfile = 'E:\python数据分析\data.csv' # 输入的数据文件 data = pd.read_csv(inputfile) # 读取数据 # 相关性分析 corr = data.corr(method = 'pearson') # 计算相关系数矩阵 print('相关系数矩阵为:\n',np.round(corr, 2)) # 保留两位小数 # 绘制热力图 import matplotlib.pyplot as plt import seaborn as sns plt.subplots(figsize=(10, 10)) # 设置画面大小 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues") plt.title('相关性热力图 nunber3045') plt.show()
#import sys #sys.path.append('../code') # 设置路径 import numpy as np import pandas as pd #-*- coding: utf-8 -*- def GM11(x0): #自定义灰色预测函数 import numpy as np x1 = x0.cumsum() #1-AGO序列 z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列 z1 = z1.reshape((len(z1),1)) B = np.append(-z1, np.ones_like(z1), axis = 1) Yn = x0[1:].reshape((len(x0)-1, 1)) [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数 f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值 delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)])) C = delta.std()/x0.std() P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0) return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率 inputfile1 = r'E:\python数据分析\new_reg_data.csv' # 输入的数据文件 inputfile2 = r'E:\python数据分析\data.csv' # 输入的数据文件 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 data = pd.read_csv(inputfile2) # 读取总的数据 new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None new_reg_data.loc[2016] = None l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] for i in l: f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] new_reg_data.loc[2014,i] = f(len(new_reg_data)-2) # 2014年预测结果 new_reg_data.loc[2015,i] = f(len(new_reg_data)-1) # 2015年预测结果 new_reg_data.loc[2016,i] = f(len(new_reg_data)) # 2015年预测结果 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 outputfile = 'E:\python数据分析/new_reg_data_GM121.xls' # 灰色预测后保存的路径 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 y.extend([np.nan,np.nan,np.nan]) new_reg_data['y'] = y new_reg_data.to_excel(outputfile) # 结果输出 print('预测结果为:\n',new_reg_data.loc[2014:2016,:]) # 预测结果展示
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVR plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 inputfile = r'E:\python数据分析/new_reg_data_GM121.xls' # 灰色预测后保存的路径 data = pd.read_excel(inputfile) # 读取数据 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 data_train = data.iloc[0:20,:].copy() # 取2014年前的数据建模 data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean)/data_std # 数据标准化 x_train = data_train[feature].values # 属性数据 y_train = data_train['y'].values # 标签数据 linearsvr = LinearSVR() # 调用LinearSVR()函数 linearsvr.fit(x_train,y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] outputfile = 'E:/new_reg_data_GM4411_revenue.xls' # SVR预测后保存的结果 data.to_excel(outputfile) print('真实值与预测值分别为:\n',data[['y','y_pred']]) fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 plt.title("财政收入真实值与预测值对比图 number 3045") plt.show()
标签:预测,import,np,new,x0,财政,data,reg From: https://www.cnblogs.com/3045qqq/p/17181683.html