首页 > 其他分享 >Ordinary Triangularization

Ordinary Triangularization

时间:2023-02-06 01:33:12浏览次数:51  
标签:linear overline beta eta Let Triangularization alpha Ordinary

目录

Ordinary Triangularization

Many results above are proved over \(\mathbb{C}\) using Schur triangularization (see this blog : [https://www.cnblogs.com/chaliceseven/p/17094280.html]). Their generalizations are made possible by ordinary triangularization.

Trick : "pass to the quotient"

Lemma. Let \(F\) be any field. Let \(V\) be a vector space over \(F\), and \(T\) a linear operator on \(V\).

Suppose that \(W\) is a nonzero \(T\)-invariant subspace of \(V\). Then it is easy to check that

\[\overline{T}:V/W\to V/W\quad\overline{T}(v+W):=T(v)+W \]

is a well-defined linear operator, and it is the unique linear operator such that \(\eta T=\overline{T}\eta\), where \(\eta:V\to V/W\) is the linear transformation defined by \(\eta(v):=v+W\).

To go further, assume that \(V\) is finite-dimensional and nonzero. Let \(\gamma=\{v_1,\cdots,v_k\}\) be an ordered basis for \(W\) and extend \(\gamma\) to an ordered basis \(\beta=\{v_1,\cdots,v_k,v_{k+1},\cdots,v_n\}\) for \(V\). Then \(\alpha=\{v_{k+1}+W,\cdots,v_n+W\}\) is an ordered basis for \(V/W\). Using the equation \([\eta]_{\beta}^{\alpha}[T]_{\beta}=[\overline{T}]_{\alpha}[\eta]_{\beta}^{\alpha}\), it is easy to show that

\[[T]_{\beta}= \begin{pmatrix} [T_W]_{\gamma}&*\\ O&[\overline{T}]_{\alpha} \end{pmatrix}.\]

Based on this fact, we have:
(1) The characteristic polynomials satisfy

\[p_T(\lambda)=p_{T_W}(\lambda)p_{\overline{T}}(\lambda). \]

(2) If \(T\) is diagonalizable, then \([T]_{\beta}\) is normal and so we must have

\[[T]_{\beta}= \begin{pmatrix} [T_W]_{\gamma}&O\\ O&[\overline{T}]_{\alpha}     \end{pmatrix}. \]

(See the remark at the end of Generalized Schur's Theorem: Proof.) Hence both \(T_W\) and \(\overline{T}\) are diagonalizable.
(3) If both \(T_W\) and \(\overline{T}\) is diagonalizable and \(\text{gcd}(p_{T_W},p_T)=1\) over \(F\), then by removal rule \(T\) is diagonalizable as well. \(\blacksquare\)

Statement and proof

THEOREM. Let \(F\) be any field. Let \(V\) be a nonzero finite-dimensional vector space over \(F\), and \(T\) a linear operator on \(V\). If the characteristic polynomial of \(T\) splits, then there exists a basis \(\beta\) for \(V\) such that \([T]_{\beta}\) is an upper triangular matrix.

Proof. Induction on \(n:=\dim V\). The theorem is trivial when \(n=1\), so we may assume that \(n\ge 2\). Assume the theorem is true whenever the dimension the space is less then \(n\). Since the characteristic polynomial of \(T\) splits, \(T\) has an eigenvector \(z\). Define \(W:=\text{span}(\{z\})\), then \(W\) is \(T\)-invariant and \(\dim(V/W)=n-1\). By the lemma above, \(p_{\overline{T}}\) divides \(p_T\) and hence splits as well. Applying the induction hypothesis to \(\overline{T}:V/W\to V/W\) finishes the proof. \(\blacksquare\)

标签:linear,overline,beta,eta,Let,Triangularization,alpha,Ordinary
From: https://www.cnblogs.com/chaliceseven/p/17094288.html

相关文章

  • MATH1851 Calculus and ordinary differential equations
    课程内容笔记,自用,不涉及任何assignment,exam答案Notesforselfuse,notincludedanyassignmentsorexams由于提前预习了微积分(见微积分\(I\),微积分\(II\))......
  • Orthogonal Quasi-Triangularization
    Theorem.Let \(V\) be a finite-dim'l real ips, and let \(T\) be a linear operator on \(V\). Then there exists an onb \(\beta\) for \(V\)......
  • OrdinaryKriging 克里金插值
    x,y,d=一维数组(散点数据)x0=np.linspace(x.min,x.max,150)y0=np.linspace(y.min,y.max,100)x1,y1=np.meshgrid(x0,y0)foriin['linear','power','g......