这个在Cryptography里有用,因为对于大的数找起来很难
Legendre's three square theorem: a positive integer can be expressed as a sum of 4 squares if and only if it is not of the form $4^a(8b+7)$ for integers $a,b$
Lagrange's Four Square Theorem / Bachet's conjecture: all positive integers can be expressed as a sum of 4 squares ($\forall n\in\mathbb{Z}^+,\exists a,b,c,d\in\mathbb{N}\text{ s.t. }n=a^2+b^2+c^2+d^2$)
一个用来算较小数的小代码
#include<bits/stdc++.h> using namespace std; int a,b,s[11111]; int main(){ for(int i=0;i<50;i++){ for(int j=i;j<50;j++){ for(int k=j;k<50;k++){ s[i*i+j*j+k*k]=1; } } } cin>>a>>b; // enter a range of values: [a,b) for(int i=a;i<b;i++){ cout<<i<<" "<<s[i]<<endl; // 1 means expressible as the sum of 3 squares, 0 otherwise } return 0; }
标签:mathbb,int,positive,Sum,Theorems,Squares,sum From: https://www.cnblogs.com/hazel-wu/p/17071739.html