首页 > 其他分享 >笛卡尔树学习笔记

笛卡尔树学习笔记

时间:2023-01-25 09:11:06浏览次数:61  
标签:右链 笛卡尔 笔记 stk 学习 键值 节点 性质

笛卡尔树

下文的资料多摘自OI Wiki

性质

笛卡尔树是一种二叉树,每一个节点都由一个键值二元组 \((k,w)\) 构成。要求 \(k\) 满足二叉搜索树的性质,而 \(w\) 满足堆的性质。如果笛卡尔树的 \(k\) ,\(w\) 键值确定的话,且 \(k\) 互不相同,\(w\) 互不相同,那么这个笛卡尔树的结构是唯一的。

例如 OI Wiki 上的这张图:

image

上面的这棵树是按每一个点内的值为键值 \(w\),把数组下标当作键值 \(k\),来建立的。仔细观察可以发现,这棵树的 \(k\) 满足二叉搜索树的性质,而键值 \(w\) 是满足小根堆的性质的。

像上面这棵树一样键值 \(k\) 恰好对应数组下标的笛卡尔树有一个性质:一棵子树内的下标是连续的一个区间(满足二叉搜索树的性质)。

谈到笛卡尔树,很容易让人想到一种家喻户晓的结构—— Treap。没错,Treap 是笛卡尔树的一种,只不过 \(w\) 的值完全随机。Treap 也有线性的构建算法,如果提前将元素排好序,显然可以使用上述单调栈算法完成构建过程,只不过很少会这么用。

构建

过程

我们考虑将元素的键值 \(k\) 进行排序,然后一个一个地插入到当前的笛卡尔树中,那么我们每一次插入的元素必在这个树的右链(右链:从根节点一直往右子树走,经过的节点)的末端。于是我们可以执行这样一个过程,从下往上比较右链节点与当前节点的 \(u\),和\(w\),如果找到了一个右链上的节点满足 \(x_{w}<u_{w}\),就把 \(u\) 接到 \(x\) 的有儿子上,而 \(x\) 原来的右子树就变成了 \(u\) 的左子树。

image

显然每个数最多进出右链一次(或者说每个点在右链中存在的是一段连续的时间)。这个过程我们可以用栈维护,栈中维护当前笛卡尔树的右链上的结点。一个点不在右链上了就把它弹掉。这样每个点最多进出一次,复杂度 \(O(n)\)。

实现

for (int i = 1; i <= n; i++) {
  int k = top;
  while (k > 0 && h[stk[k]] > h[i]) k--;
  if (k) rs[stk[k]] = i;  // rs代表笛卡尔树每个节点的右儿子
  if (k < top) ls[i] = stk[k + 1];  // ls代表笛卡尔树每个节点的左儿子
  stk[++k] = i;
  top = k;
}

标签:右链,笛卡尔,笔记,stk,学习,键值,节点,性质
From: https://www.cnblogs.com/Multitree/p/17066653.html

相关文章