AI | 强化学习 | qlearning
之前跟着莫烦python用numpy和pandas来做强化学习的qtable,感觉pandas太反人类了,这次把他课上的例子用python原生的字典来做qtable重新写了一份,便于理解。
代码如下:
import time
import random
N_STATES = 10 # 世界的最大长度
MAX_EPISODES = 15
FRESH_TIME = 0.01 # 刷新时间
class QLearning():
def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
self.actions = actions
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon = e_greedy
# 用字典来做q表
'''
{
'state1': {'action1': $reward1, 'action2': $reward2}
...
}
'''
self.q_table = {}
def check_state_exist(self, state):
if state not in self.q_table:
self.q_table[state] = {}
for action in self.actions:
self.q_table[state][action] = 0.0
def choose_action(self, observation):
# 查看情况是否存在
self.check_state_exist(observation)
# 90%的概率选择最优解
if random.random() < self.epsilon:
state_action = self.q_table[observation] # 取出q表行,找最大值
_max = max(state_action.values())
_actions = []
for key,value in state_action.items():
if value == _max:
_actions.append(key)
action = random.choice(_actions)
else:
action = random.choice(self.actions)
return action
def learn(self, s, a, r, s_):
self.check_state_exist(s_)
q_predict = self.q_table[s][a]
if s_ != 'win':
q_target = r + self.gamma * max(self.q_table[s_].values())
else:
q_target = r # terminal
self.q_table[s][a] += self.lr * (q_target - q_predict) # update
# 环境反馈
def get_env_feedback(S, A):
if A == 'right':
if S == N_STATES - 2: # 游戏结束
S_ = 'win'
R = 1
else:
S_ = S+1
R = 0
else:
R = 0
if S == 0:
S_ = S
else:
S_ = S - 1
return S_, R
# 环境更新
def update_env(S, episode, step_counter):
env_list = ['-']*(N_STATES -1) + ['T'] # 一维移动环境
if S == 'win':
interaction = 'Episode %s: total_step = %s' % (episode+1,step_counter)
print('\r{}'.format(interaction), end='')
time.sleep(2)
print('\r ', end='')
else:
env_list[S] = 'o'
interaction = ''.join(env_list)
print('\r{}'.format(interaction), end='')
time.sleep(FRESH_TIME)
def run():
rl = QLearning(actions=['left', 'right'])
for episode in range(MAX_EPISODES):
print(rl.q_table)
step_counter = 0
S = 0
is_terminated = False
update_env(S, episode, step_counter)
while not is_terminated:
A = rl.choose_action(S)
S_, R = get_env_feedback(S, A) # 决策+获取下一个状态
rl.learn(S, A, R, S_)
if S_ == 'win':
is_terminated = True # 结束这一回合
S = S_ # 移动
update_env(S, episode, step_counter+1)
step_counter += 1
return rl
RL = run()
print(RL.q_table)
标签:AI,qlearning,actions,state,env,action,table,强化,self
From: https://www.cnblogs.com/Mz1-rc/p/17018209.html