首页 > 其他分享 >TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和 tf.data.Dataset机制

TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和 tf.data.Dataset机制

时间:2023-01-01 11:33:15浏览次数:63  
标签:slice image labels list batch tf 机制 resize


TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和tf.data.Dataset机制


    之前写了一篇博客,关于《​​Tensorflow生成自己的图片数据集TFrecord​​》,项目做多了,你会发现将数据转为TFrecord格式,实在是太麻烦了,灵活性太差!后面就总结一下TensorFlow数据读取机制,主要还是介绍tf.data.Dataset的数据读取机制(​​Pipeline机制​​)。

    TensorFlow数据读取机制主要是两种方法:

(1)一种是使用文件队列方式,如使用slice_input_producer和string_input_producer;这种方法既可以将数据转存为TFrecord数据格式,也可以直接读取文件图片数据,当然转存为TFrecord数据格式进行读取,会更高效点

(2)另一种是TensorFlow 1.4版本后出现的tf.data.Dataset的数据读取机制(​​Pipeline机制​​)。这是TensorFlow强烈推荐的方式,是一种更高效的读取方式。使用tf.data.Dataset模块的pipline机制,可实现CPU多线程处理输入的数据,如读取图片和图片的一些的预处理,这样GPU可以专注于训练过程,而CPU去准备数据。

      本博客Github源码:​​https://github.com/PanJinquan/tensorflow-learning-tutorials​​ ->tf_record_demo文件夹(觉得可以,还请给个“Star”哦

     之前专门写了一篇博客关于《​​ Tensorflow生成自己的图片数据集TFrecords(支持多标签label)​​》​​,主要实现的是使用自己的数据集制作TensorFlow的TFrecord数据格式。


目录

目录

​​TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和tf.data.Dataset机制​​

​​1. 文件队列读取方式:slice_input_producer和string_input_producer​​

​​1.1.生成图片数据集TFrecords​​

​​(1)生成单个record文件 (单label)​​

​​(2)生成单个record文件 (多label)​​

​​(3)生成多个record文件的方法​​

​​1.2. 直接文件读取方式 ​​

​​2.tf.data.Dataset数据读取机制:Pipeline机制​​

​​prefetch(必须放在最后)​​

​​map​​

​​repeat​​

​​实例代码1:dataset.make_initializable_iterator()​​

​​实例代码2:dataset.make_one_shot_iterator()​​

​​实例代码3:产生用于训练的图和label​​

​​实例代码4:产生用于训练的原始图和target目标图​​

​​实例代码5: tf.data.Dataset.from_generator​​

​​3. 用Python循环产生批量数据batch​​

​​4.参考资料:​​



1. 文件队列读取方式:slice_input_producer和string_input_producer

    TensorFlow可以采用tf.train.slice_input_producer或者tf.train.string_input_producer两种方法产生文件队列,其区别就是:前者是输入是tensor_list,因此,可以将多个list组合成一个tensorlist作为输入;而后者只能是一个string_tensor了,例子如下:

image_dir ='path/to/image_dir/*.jpg'
image_list = glob.glob(image_dir)
label_list=...
image_list = tf.convert_to_tensor(image_list, dtype=tf.string)
# 可以将image_list,label_list多个list组合成一个tensor_list
image_que, label_que = tf.train.slice_input_producer([image_list,label_list], num_epochs=1)
# 只能时string_tensor,所以不能组合多个list
image = tf.train.string_input_producer(image_list, num_epochs=1)

1.1.生成图片数据集TFrecords

    假设train.txt保存图片的路径和标签信息,如下,以空格分割,第一项的图片的路径名,第二项是图片对应的labels

dog/1.jpg 0
dog/2.jpg 0
dog/3.jpg 0
dog/4.jpg 0
cat/1.jpg 1
cat/2.jpg 1
cat/3.jpg 1
cat/4.jpg 1

    这里提供三种方法将图像数据转存为TFrecords数据格式,当然也包含TFrecords解析的方法,详细的用法都会在函数参数说明,已经封装了很简单了,你只需要改变你图片的路径就可以。

  • 生成单个record文件 (单label)

    这种方法会将所有图片数据和单labels转存为一个record文件,合适单labels小批量的数据

  • 生成单个record文件 (多label)

    这种方法将所有图片数据和多个labels转存为一个record文件,合适多labels的小批量的数据

  • 生成多个record文件的方法

    这种方法将图片数据和labels,切分一个batch_size的大小,并转存为多个record文件,合适大批量的数据

(1)生成单个record文件 (单label)

     下面是封装好的py文件,可以直接生成单个record文件 ,当然这里假设只有一个label情况。其中get_batch_images函数会产生一个batch的数据,这个batch的数据就可以用于CNN的网络训练的数据。

# -*-coding: utf-8 -*-
"""
@Project: create_tfrecord
@File : create_tfrecord.py
@Author : panjq
@Date : 2018-07-27 17:19:54
@desc : 将图片数据保存为单个tfrecord文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
# 生成字符串型的属性
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def get_example_nums(tf_records_filenames):
'''
统计tf_records图像的个数(example)个数
:param tf_records_filenames: tf_records文件路径
:return:
'''
nums= 0
for record in tf.python_io.tf_record_iterator(tf_records_filenames):
nums += 1
return nums

def show_image(title,image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()

def load_labels_file(filename,labels_num=1,shuffle=False):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
:param filename:
:param labels_num :labels个数
:param shuffle :是否打乱顺序
:return:images type->list
:return:labels type->list
'''
images=[]
labels=[]
with open(filename) as f:
lines_list=f.readlines()
if shuffle:
random.shuffle(lines_list)

for lines in lines_list:
line=lines.rstrip().split(' ')
label=[]
for i in range(labels_num):
label.append(int(line[i+1]))
images.append(line[0])
labels.append(label)
return images,labels

def read_image(filename, resize_height, resize_width,normalization=False):
'''
读取图片数据,默认返回的是uint8,[0,255]
:param filename:
:param resize_height:
:param resize_width:
:param normalization:是否归一化到[0.,1.0]
:return: 返回的图片数据
'''

bgr_image = cv2.imread(filename)
if len(bgr_image.shape)==2:#若是灰度图则转为三通道
print("Warning:gray image",filename)
bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
# show_image(filename,rgb_image)
# rgb_image=Image.open(filename)
if resize_height>0 and resize_width>0:
rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
rgb_image=np.asanyarray(rgb_image)
if normalization:
# 不能写成:rgb_image=rgb_image/255
rgb_image=rgb_image/255.0
# show_image("src resize image",image)
return rgb_image


def get_batch_images(images,labels,batch_size,labels_nums,one_hot=False,shuffle=False,num_threads=1):
'''
:param images:图像
:param labels:标签
:param batch_size:
:param labels_nums:标签个数
:param one_hot:是否将labels转为one_hot的形式
:param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
:return:返回batch的images和labels
'''
min_after_dequeue = 200
capacity = min_after_dequeue + 3 * batch_size # 保证capacity必须大于min_after_dequeue参数值
if shuffle:
images_batch, labels_batch = tf.train.shuffle_batch([images,labels],
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue,
num_threads=num_threads)
else:
images_batch, labels_batch = tf.train.batch([images,labels],
batch_size=batch_size,
capacity=capacity,
num_threads=num_threads)
if one_hot:
labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
return images_batch,labels_batch

def read_records(filename,resize_height, resize_width,type=None):
'''
解析record文件:源文件的图像数据是RGB,uint8,[0,255],一般作为训练数据时,需要归一化到[0,1]
:param filename:
:param resize_height:
:param resize_width:
:param type:选择图像数据的返回类型
None:默认将uint8-[0,255]转为float32-[0,255]
normalization:归一化float32-[0,1]
standardization:标准化float32-[0,1],再减均值中心化
:return:
'''
# 创建文件队列,不限读取的数量
filename_queue = tf.train.string_input_producer([filename])
# create a reader from file queue
reader = tf.TFRecordReader()
# reader从文件队列中读入一个序列化的样本
_, serialized_example = reader.read(filename_queue)
# get feature from serialized example
# 解析符号化的样本
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

tf_height = features['height']
tf_width = features['width']
tf_depth = features['depth']
tf_label = tf.cast(features['label'], tf.int32)
# PS:恢复原始图像数据,reshape的大小必须与保存之前的图像shape一致,否则出错
# tf_image=tf.reshape(tf_image, [-1]) # 转换为行向量
tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度

# 恢复数据后,才可以对图像进行resize_images:输入uint->输出float32
# tf_image=tf.image.resize_images(tf_image,[224, 224])

# [3]数据类型处理
# 存储的图像类型为uint8,tensorflow训练时数据必须是tf.float32
if type is None:
tf_image = tf.cast(tf_image, tf.float32)
elif type == 'normalization': # [1]若需要归一化请使用:
# 仅当输入数据是uint8,才会归一化[0,255]
# tf_image = tf.cast(tf_image, dtype=tf.uint8)
# tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)
tf_image = tf.cast(tf_image, tf.float32) * (1. / 255.0) # 归一化
elif type == 'standardization': # 标准化
# tf_image = tf.cast(tf_image, dtype=tf.uint8)
# tf_image = tf.image.per_image_standardization(tf_image) # 标准化(减均值除方差)
# 若需要归一化,且中心化,假设均值为0.5,请使用:
tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5 # 中心化

# 这里仅仅返回图像和标签
# return tf_image, tf_height,tf_width,tf_depth,tf_label
return tf_image,tf_label


def create_records(image_dir,file, output_record_dir, resize_height, resize_width,shuffle,log=5):
'''
实现将图像原始数据,label,长,宽等信息保存为record文件
注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
:param image_dir:原始图像的目录
:param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
:param output_record_dir:保存record文件的路径
:param resize_height:
:param resize_width:
PS:当resize_height或者resize_width=0是,不执行resize
:param shuffle:是否打乱顺序
:param log:log信息打印间隔
'''
# 加载文件,仅获取一个label
images_list, labels_list=load_labels_file(file,1,shuffle)

writer = tf.python_io.TFRecordWriter(output_record_dir)
for i, [image_name, labels] in enumerate(zip(images_list, labels_list)):
image_path=os.path.join(image_dir,images_list[i])
if not os.path.exists(image_path):
print('Err:no image',image_path)
continue
image = read_image(image_path, resize_height, resize_width)
image_raw = image.tostring()
if i%log==0 or i==len(images_list)-1:
print('------------processing:%d-th------------' % (i))
print('current image_path=%s' % (image_path),'shape:{}'.format(image.shape),'labels:{}'.format(labels))
# 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
label=labels[0]
example = tf.train.Example(features=tf.train.Features(feature={
'image_raw': _bytes_feature(image_raw),
'height': _int64_feature(image.shape[0]),
'width': _int64_feature(image.shape[1]),
'depth': _int64_feature(image.shape[2]),
'label': _int64_feature(label)
}))
writer.write(example.SerializeToString())
writer.close()

def disp_records(record_file,resize_height, resize_width,show_nums=4):
'''
解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
:param tfrecord_file: record文件路径
:return:
'''
# 读取record函数
tf_image, tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
# 显示前4个图片
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(show_nums):
image,label = sess.run([tf_image,tf_label]) # 在会话中取出image和label
# image = tf_image.eval()
# 直接从record解析的image是一个向量,需要reshape显示
# image = image.reshape([height,width,depth])
print('shape:{},tpye:{},labels:{}'.format(image.shape,image.dtype,label))
# pilimg = Image.fromarray(np.asarray(image_eval_reshape))
# pilimg.show()
show_image("image:%d"%(label),image)
coord.request_stop()
coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
'''
:param record_file: record文件路径
:param resize_height:
:param resize_width:
:return:
:PS:image_batch, label_batch一般作为网络的输入
'''
# 读取record函数
tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
image_batch, label_batch= get_batch_images(tf_image,tf_label,batch_size=4,labels_nums=5,one_hot=False,shuffle=False)

init = tf.global_variables_initializer()
with tf.Session() as sess: # 开始一个会话
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(4):
# 在会话中取出images和labels
images, labels = sess.run([image_batch, label_batch])
# 这里仅显示每个batch里第一张图片
show_image("image", images[0, :, :, :])
print('shape:{},tpye:{},labels:{}'.format(images.shape,images.dtype,labels))

# 停止所有线程
coord.request_stop()
coord.join(threads)


if __name__ == '__main__':
# 参数设置

resize_height = 224 # 指定存储图片高度
resize_width = 224 # 指定存储图片宽度
shuffle=True
log=5
# 产生train.record文件
image_dir='dataset/train'
train_labels = 'dataset/train.txt' # 图片路径
train_record_output = 'dataset/record/train.tfrecords'
create_records(image_dir,train_labels, train_record_output, resize_height, resize_width,shuffle,log)
train_nums=get_example_nums(train_record_output)
print("save train example nums={}".format(train_nums))

# 产生val.record文件
image_dir='dataset/val'
val_labels = 'dataset/val.txt' # 图片路径
val_record_output = 'dataset/record/val.tfrecords'
create_records(image_dir,val_labels, val_record_output, resize_height, resize_width,shuffle,log)
val_nums=get_example_nums(val_record_output)
print("save val example nums={}".format(val_nums))

# 测试显示函数
# disp_records(train_record_output,resize_height, resize_width)
batch_test(train_record_output,resize_height, resize_width)

(2)生成单个record文件 (多label)

    对于多label的情况,你可以在单label的基础上增加多个“label': tf.FixedLenFeature([], tf.int64)“,但每次label个数不一样时,都需要修改,挺麻烦的。这里提供一个方法:label数据也可以像图像数据那样,转为string类型来保存:labels_raw = np.asanyarray(labels,dtype=np.float32).tostring() ,解析时也跟图像数据一样进行解析:tf_label = tf.decode_raw(features['labels'],tf.float32) ,这样,不管多少个label,我们都可以保存为record文件了:

   多label的TXT文件:

0.jpg 0.33 0.55
1.jpg 0.42 0.73
2.jpg 0.16 0.75
3.jpg 0.78 0.66
4.jpg 0.46 0.59
5.jpg 0.46 0.09
6.jpg 0.89 0.93
7.jpg 0.42 0.82
8.jpg 0.39 0.76
9.jpg 0.46 0.40
# -*-coding: utf-8 -*-
"""
@Project: create_tfrecord
@File : create_tf_record_multi_label.py
@Author : panjq
@Date : 2018-07-27 17:19:54
@desc : 将图片数据,多label,保存为单个tfrecord文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

# 生成字符串型的属性
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def get_example_nums(tf_records_filenames):
'''
统计tf_records图像的个数(example)个数
:param tf_records_filenames: tf_records文件路径
:return:
'''
nums= 0
for record in tf.python_io.tf_record_iterator(tf_records_filenames):
nums += 1
return nums

def show_image(title,image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()

def load_labels_file(filename,labels_num=1,shuffle=False):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
:param filename:
:param labels_num :labels个数
:param shuffle :是否打乱顺序
:return:images type->list
:return:labels type->list
'''
images=[]
labels=[]
with open(filename) as f:
lines_list=f.readlines()
if shuffle:
random.shuffle(lines_list)

for lines in lines_list:
line=lines.rstrip().split(' ')
label=[]
for i in range(labels_num):
label.append(float(line[i+1]))
images.append(line[0])
labels.append(label)
return images,labels

def read_image(filename, resize_height, resize_width,normalization=False):
'''
读取图片数据,默认返回的是uint8,[0,255]
:param filename:
:param resize_height:
:param resize_width:
:param normalization:是否归一化到[0.,1.0]
:return: 返回的图片数据
'''

bgr_image = cv2.imread(filename)
if len(bgr_image.shape)==2:#若是灰度图则转为三通道
print("Warning:gray image",filename)
bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
# show_image(filename,rgb_image)
# rgb_image=Image.open(filename)
if resize_height>0 and resize_width>0:
rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
rgb_image=np.asanyarray(rgb_image)
if normalization:
# 不能写成:rgb_image=rgb_image/255
rgb_image=rgb_image/255.0
# show_image("src resize image",image)
return rgb_image


def get_batch_images(images,labels,batch_size,labels_nums,one_hot=False,shuffle=False,num_threads=1):
'''
:param images:图像
:param labels:标签
:param batch_size:
:param labels_nums:标签个数
:param one_hot:是否将labels转为one_hot的形式
:param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
:return:返回batch的images和labels
'''
min_after_dequeue = 200
capacity = min_after_dequeue + 3 * batch_size # 保证capacity必须大于min_after_dequeue参数值
if shuffle:
images_batch, labels_batch = tf.train.shuffle_batch([images,labels],
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue,
num_threads=num_threads)
else:
images_batch, labels_batch = tf.train.batch([images,labels],
batch_size=batch_size,
capacity=capacity,
num_threads=num_threads)
if one_hot:
labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
return images_batch,labels_batch

def read_records(filename,resize_height, resize_width,type=None):
'''
解析record文件:源文件的图像数据是RGB,uint8,[0,255],一般作为训练数据时,需要归一化到[0,1]
:param filename:
:param resize_height:
:param resize_width:
:param type:选择图像数据的返回类型
None:默认将uint8-[0,255]转为float32-[0,255]
normalization:归一化float32-[0,1]
standardization:归一化float32-[0,1],再减均值中心化
:return:
'''
# 创建文件队列,不限读取的数量
filename_queue = tf.train.string_input_producer([filename])
# create a reader from file queue
reader = tf.TFRecordReader()
# reader从文件队列中读入一个序列化的样本
_, serialized_example = reader.read(filename_queue)
# get feature from serialized example
# 解析符号化的样本
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'labels': tf.FixedLenFeature([], tf.string)
}
)
tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

tf_height = features['height']
tf_width = features['width']
tf_depth = features['depth']
# tf_label = tf.cast(features['labels'], tf.float32)
tf_label = tf.decode_raw(features['labels'],tf.float32)

# PS:恢复原始图像数据,reshape的大小必须与保存之前的图像shape一致,否则出错
# tf_image=tf.reshape(tf_image, [-1]) # 转换为行向量
tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度

tf_label=tf.reshape(tf_label, [2]) # 设置图像的维度


# 恢复数据后,才可以对图像进行resize_images:输入uint->输出float32
# tf_image=tf.image.resize_images(tf_image,[224, 224])

# [3]数据类型处理
# 存储的图像类型为uint8,tensorflow训练时数据必须是tf.float32
if type is None:
tf_image = tf.cast(tf_image, tf.float32)
elif type == 'normalization': # [1]若需要归一化请使用:
# 仅当输入数据是uint8,才会归一化[0,255]
# tf_image = tf.cast(tf_image, dtype=tf.uint8)
# tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)
tf_image = tf.cast(tf_image, tf.float32) * (1. / 255.0) # 归一化
elif type == 'standardization': # 标准化
# tf_image = tf.cast(tf_image, dtype=tf.uint8)
# tf_image = tf.image.per_image_standardization(tf_image) # 标准化(减均值除方差)
# 若需要归一化,且中心化,假设均值为0.5,请使用:
tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5 # 中心化

# 这里仅仅返回图像和标签
# return tf_image, tf_height,tf_width,tf_depth,tf_label
return tf_image,tf_label


def create_records(image_dir,file, output_record_dir, resize_height, resize_width,shuffle,log=5):
'''
实现将图像原始数据,label,长,宽等信息保存为record文件
注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
:param image_dir:原始图像的目录
:param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
:param output_record_dir:保存record文件的路径
:param resize_height:
:param resize_width:
PS:当resize_height或者resize_width=0是,不执行resize
:param shuffle:是否打乱顺序
:param log:log信息打印间隔
'''
# 加载文件,仅获取一个label
labels_num=2
images_list, labels_list=load_labels_file(file,labels_num,shuffle)

writer = tf.python_io.TFRecordWriter(output_record_dir)
for i, [image_name, labels] in enumerate(zip(images_list, labels_list)):
image_path=os.path.join(image_dir,images_list[i])
if not os.path.exists(image_path):
print('Err:no image',image_path)
continue
image = read_image(image_path, resize_height, resize_width)
image_raw = image.tostring()
if i%log==0 or i==len(images_list)-1:
print('------------processing:%d-th------------' % (i))
print('current image_path=%s' % (image_path),'shape:{}'.format(image.shape),'labels:{}'.format(labels))
# 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
# label=labels[0]
# labels_raw="0.12,0,15"
labels_raw = np.asanyarray(labels,dtype=np.float32).tostring()

example = tf.train.Example(features=tf.train.Features(feature={
'image_raw': _bytes_feature(image_raw),
'height': _int64_feature(image.shape[0]),
'width': _int64_feature(image.shape[1]),
'depth': _int64_feature(image.shape[2]),
'labels': _bytes_feature(labels_raw),

}))
writer.write(example.SerializeToString())
writer.close()

def disp_records(record_file,resize_height, resize_width,show_nums=4):
'''
解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
:param tfrecord_file: record文件路径
:return:
'''
# 读取record函数
tf_image, tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
# 显示前4个图片
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(show_nums):
image,label = sess.run([tf_image,tf_label]) # 在会话中取出image和label
# image = tf_image.eval()
# 直接从record解析的image是一个向量,需要reshape显示
# image = image.reshape([height,width,depth])
print('shape:{},tpye:{},labels:{}'.format(image.shape,image.dtype,label))
# pilimg = Image.fromarray(np.asarray(image_eval_reshape))
# pilimg.show()
show_image("image:{}".format(label),image)
coord.request_stop()
coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
'''
:param record_file: record文件路径
:param resize_height:
:param resize_width:
:return:
:PS:image_batch, label_batch一般作为网络的输入
'''
# 读取record函数
tf_image,tf_label = read_records(record_file,resize_height,resize_width,type='normalization')
image_batch, label_batch= get_batch_images(tf_image,tf_label,batch_size=4,labels_nums=2,one_hot=False,shuffle=True)

init = tf.global_variables_initializer()
with tf.Session() as sess: # 开始一个会话
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(4):
# 在会话中取出images和labels
images, labels = sess.run([image_batch, label_batch])
# 这里仅显示每个batch里第一张图片
show_image("image", images[0, :, :, :])
print('shape:{},tpye:{},labels:{}'.format(images.shape,images.dtype,labels))

# 停止所有线程
coord.request_stop()
coord.join(threads)


if __name__ == '__main__':
# 参数设置

resize_height = 224 # 指定存储图片高度
resize_width = 224 # 指定存储图片宽度
shuffle=True
log=1000
# 产生train.record文件
image_dir='dataset_regression/images'
train_labels = 'dataset_regression/train.txt' # 图片路径
train_record_output = 'dataset_regression/record/train.tfrecords'
create_records(image_dir,train_labels, train_record_output, resize_height, resize_width,shuffle,log)
train_nums=get_example_nums(train_record_output)
print("save train example nums={}".format(train_nums))
# 测试显示函数
# disp_records(train_record_output,resize_height, resize_width)
# 产生val.record文件
image_dir='dataset_regression/images'
val_labels = 'dataset_regression/val.txt' # 图片路径
val_record_output = 'dataset_regression/record/val.tfrecords'
create_records(image_dir,val_labels, val_record_output, resize_height, resize_width,shuffle,log)
val_nums=get_example_nums(val_record_output)
print("save val example nums={}".format(val_nums))
#
# # 测试显示函数
# # disp_records(train_record_output,resize_height, resize_width)
# batch_test(val_record_output,resize_height, resize_width)

(3)生成多个record文件的方法

      上述该代码只能保存为单个record文件,当图片数据很多时候,会导致单个record文件超级巨大的情况,解决方法就是,将数据分成多个record文件保存,读取时,只需要将多个record文件的路径列表交给“tf.train.string_input_producer”。可以设置参数batchSize的大小,比如batchSize=2000,表示每2000张图片保存为一个*.tfrecords,这样可以避免单个record文件过大的情况。

      完整代码如下:

# -*-coding: utf-8 -*-
"""
@Project: tf_record_demo
@File : tf_record_batchSize.py
@Author : panjq
@Date : 2018-07-27 17:19:54
@desc : 将图片数据保存为多个record文件
"""

##########################################################################

import tensorflow as tf
import numpy as np
import os
import cv2
import math
import matplotlib.pyplot as plt
import random
from PIL import Image


##########################################################################
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
# 生成字符串型的属性
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
# 生成实数型的属性
def float_list_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))

def show_image(title,image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()

def load_labels_file(filename,labels_num=1):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签2,如:test_image/1.jpg 0 2
:param filename:
:param labels_num :labels个数
:return:images type->list
:return:labels type->list
'''
images=[]
labels=[]
with open(filename) as f:
for lines in f.readlines():
line=lines.rstrip().split(' ')
label=[]
for i in range(labels_num):
label.append(int(line[i+1]))
images.append(line[0])
labels.append(label)
return images,labels

def read_image(filename, resize_height, resize_width):
'''
读取图片数据,默认返回的是uint8,[0,255]
:param filename:
:param resize_height:
:param resize_width:
:return: 返回的图片数据是uint8,[0,255]
'''

bgr_image = cv2.imread(filename)
if len(bgr_image.shape)==2:#若是灰度图则转为三通道
print("Warning:gray image",filename)
bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR)

rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)#将BGR转为RGB
# show_image(filename,rgb_image)
# rgb_image=Image.open(filename)
if resize_height>0 and resize_width>0:
rgb_image=cv2.resize(rgb_image,(resize_width,resize_height))
rgb_image=np.asanyarray(rgb_image)
# show_image("src resize image",image)

return rgb_image


def create_records(image_dir,file, record_txt_path, batchSize,resize_height, resize_width):
'''
实现将图像原始数据,label,长,宽等信息保存为record文件
注意:读取的图像数据默认是uint8,再转为tf的字符串型BytesList保存,解析请需要根据需要转换类型
:param image_dir:原始图像的目录
:param file:输入保存图片信息的txt文件(image_dir+file构成图片的路径)
:param output_record_txt_dir:保存record文件的路径
:param batchSize: 每batchSize个图片保存一个*.tfrecords,避免单个文件过大
:param resize_height:
:param resize_width:
PS:当resize_height或者resize_width=0是,不执行resize
'''
if os.path.exists(record_txt_path):
os.remove(record_txt_path)

setname, ext = record_txt_path.split('.')

# 加载文件,仅获取一个label
images_list, labels_list=load_labels_file(file,1)
sample_num = len(images_list)
# 打乱样本的数据
# random.shuffle(labels_list)
batchNum = int(math.ceil(1.0 * sample_num / batchSize))

for i in range(batchNum):
start = i * batchSize
end = min((i + 1) * batchSize, sample_num)
batch_images = images_list[start:end]
batch_labels = labels_list[start:end]
# 逐个保存*.tfrecords文件
filename = setname + '{0}.tfrecords'.format(i)
print('save:%s' % (filename))

writer = tf.python_io.TFRecordWriter(filename)
for i, [image_name, labels] in enumerate(zip(batch_images, batch_labels)):
image_path=os.path.join(image_dir,batch_images[i])
if not os.path.exists(image_path):
print('Err:no image',image_path)
continue
image = read_image(image_path, resize_height, resize_width)
image_raw = image.tostring()
print('image_path=%s,shape:( %d, %d, %d)' % (image_path,image.shape[0], image.shape[1], image.shape[2]),'labels:',labels)
# 这里仅保存一个label,多label适当增加"'label': _int64_feature(label)"项
label=labels[0]
example = tf.train.Example(features=tf.train.Features(feature={
'image_raw': _bytes_feature(image_raw),
'height': _int64_feature(image.shape[0]),
'width': _int64_feature(image.shape[1]),
'depth': _int64_feature(image.shape[2]),
'label': _int64_feature(label)
}))
writer.write(example.SerializeToString())
writer.close()

# 用txt保存*.tfrecords文件列表
# record_list='{}.txt'.format(setname)
with open(record_txt_path, 'a') as f:
f.write(filename + '\n')

def read_records(filename,resize_height, resize_width):
'''
解析record文件
:param filename:保存*.tfrecords文件的txt文件路径
:return:
'''
# 读取txt中所有*.tfrecords文件
with open(filename, 'r') as f:
lines = f.readlines()
files_list=[]
for line in lines:
files_list.append(line.rstrip())

# 创建文件队列,不限读取的数量
filename_queue = tf.train.string_input_producer(files_list,shuffle=False)
# create a reader from file queue
reader = tf.TFRecordReader()
# reader从文件队列中读入一个序列化的样本
_, serialized_example = reader.read(filename_queue)
# get feature from serialized example
# 解析符号化的样本
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
tf_image = tf.decode_raw(features['image_raw'], tf.uint8)#获得图像原始的数据

tf_height = features['height']
tf_width = features['width']
tf_depth = features['depth']
tf_label = tf.cast(features['label'], tf.int32)
# tf_image=tf.reshape(tf_image, [-1]) # 转换为行向量
tf_image=tf.reshape(tf_image, [resize_height, resize_width, 3]) # 设置图像的维度
# 存储的图像类型为uint8,这里需要将类型转为tf.float32
# tf_image = tf.cast(tf_image, tf.float32)
# [1]若需要归一化请使用:
tf_image = tf.image.convert_image_dtype(tf_image, tf.float32)# 归一化
# tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) # 归一化
# [2]若需要归一化,且中心化,假设均值为0.5,请使用:
# tf_image = tf.cast(tf_image, tf.float32) * (1. / 255) - 0.5 #中心化
return tf_image, tf_height,tf_width,tf_depth,tf_label

def disp_records(record_file,resize_height, resize_width,show_nums=4):
'''
解析record文件,并显示show_nums张图片,主要用于验证生成record文件是否成功
:param tfrecord_file: record文件路径
:param resize_height:
:param resize_width:
:param show_nums: 默认显示前四张照片

:return:
'''
tf_image, tf_height, tf_width, tf_depth, tf_label = read_records(record_file,resize_height, resize_width) # 读取函数
# 显示前show_nums个图片
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(show_nums):
image,height,width,depth,label = sess.run([tf_image,tf_height,tf_width,tf_depth,tf_label]) # 在会话中取出image和label
# image = tf_image.eval()
# 直接从record解析的image是一个向量,需要reshape显示
# image = image.reshape([height,width,depth])
print('shape:',image.shape,'label:',label)
# pilimg = Image.fromarray(np.asarray(image_eval_reshape))
# pilimg.show()
show_image("image:%d"%(label),image)
coord.request_stop()
coord.join(threads)


def batch_test(record_file,resize_height, resize_width):
'''
:param record_file: record文件路径
:param resize_height:
:param resize_width:
:return:
:PS:image_batch, label_batch一般作为网络的输入
'''

tf_image,tf_height,tf_width,tf_depth,tf_label = read_records(record_file,resize_height, resize_width) # 读取函数

# 使用shuffle_batch可以随机打乱输入:
min_after_dequeue = 100#该值越大,数据越乱,必须小于capacity
batch_size = 4
# capacity = (min_after_dequeue + (num_threads + a small safety margin∗batchsize)
capacity = min_after_dequeue + 3 * batch_size#容量:一个整数,队列中的最大的元素数

image_batch, label_batch = tf.train.shuffle_batch([tf_image, tf_label],
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue)

init = tf.global_variables_initializer()
with tf.Session() as sess: # 开始一个会话
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(4):
# 在会话中取出images和labels
images, labels = sess.run([image_batch, label_batch])
# 这里仅显示每个batch里第一张图片
show_image("image", images[0, :, :, :])
print(images.shape, labels)
# 停止所有线程
coord.request_stop()
coord.join(threads)


if __name__ == '__main__':
# 参数设置
image_dir='dataset/train'
train_file = 'dataset/train.txt' # 图片路径
output_record_txt = 'dataset/record/record.txt'#指定保存record的文件列表
resize_height = 224 # 指定存储图片高度
resize_width = 224 # 指定存储图片宽度
batchSize=8000 #batchSize一般设置为8000,即每batchSize张照片保存为一个record文件
# 产生record文件
create_records(image_dir=image_dir,
file=train_file,
record_txt_path=output_record_txt,
batchSize=batchSize,
resize_height=resize_height,
resize_width=resize_width)

# 测试显示函数
disp_records(output_record_txt,resize_height, resize_width)

# batch_test(output_record_txt,resize_height, resize_width)

1.2. 直接文件读取方式 

    上面介绍的是如何将数据转存为TFrecord文件,训练时再解析TFrecord。这种转存为TFrecord数据格式的方法,虽然高效,但也丧失了灵活性,特别是新增数据或者删除相关数据时,这时就不得不重新制作TFrecord数据了。这就挺麻烦啦,如果不想转为TFrecord文件,可以直接读取图像文件进行训练。

    这种方法比较简单,灵活性很强,但效率很低,因为每次迭代训练,GPU/CPU都要等待数据读取I/O操作,图像文件读取以及预处理过程本身就很耗时,甚至比你迭代一次网络还耗时。解决的方法,就是采用tf.data.Dataset数据读取机制。

    直接文件读取方式的完整代码可以参考如下:

    假设我们有train.txt的文件数据如下:

0.jpg 0
1.jpg 0
2.jpg 0
3.jpg 0
4.jpg 0
5.jpg 1
6.jpg 1
7.jpg 1
8.jpg 1
9.jpg 1

    可以使用下面的方法直接读取图像数据,并产生一个batch的训练数据:

# -*-coding: utf-8 -*-
"""
@Project: tf_record_demo
@File : tf_read_files.py
@Author : panjq
@Date : 2018-10-14 10:44:06
"""
import tensorflow as tf
import glob
import numpy as np
import os
import matplotlib.pyplot as plt

import cv2
def show_image(title, image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.imshow(image, cmap='gray')
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()


def tf_read_image(filename, resize_height, resize_width):
'''
读取图片
:param filename:
:param resize_height:
:param resize_width:
:return:
'''
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
# tf_image = tf.cast(image_decoded, tf.float32)
tf_image = tf.cast(image_decoded, tf.float32) * (1. / 255.0) # 归一化
if resize_width>0 and resize_height>0:
tf_image = tf.image.resize_images(tf_image, [resize_height, resize_width])
# tf_image = tf.image.per_image_standardization(tf_image) # 标准化[0,1](减均值除方差)
return tf_image


def get_batch_images(image_list, label_list, batch_size, labels_nums, resize_height, resize_width, one_hot=False, shuffle=False):
'''
:param image_list:图像
:param label_list:标签
:param batch_size:
:param labels_nums:标签个数
:param one_hot:是否将labels转为one_hot的形式
:param shuffle:是否打乱顺序,一般train时shuffle=True,验证时shuffle=False
:return:返回batch的images和labels
'''
# 生成队列
image_que, tf_label = tf.train.slice_input_producer([image_list, label_list], shuffle=shuffle)
tf_image = tf_read_image(image_que, resize_height, resize_width)
min_after_dequeue = 200
capacity = min_after_dequeue + 3 * batch_size # 保证capacity必须大于min_after_dequeue参数值
if shuffle:
images_batch, labels_batch = tf.train.shuffle_batch([tf_image, tf_label],
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue)
else:
images_batch, labels_batch = tf.train.batch([tf_image, tf_label],
batch_size=batch_size,
capacity=capacity)
if one_hot:
labels_batch = tf.one_hot(labels_batch, labels_nums, 1, 0)
return images_batch, labels_batch


def load_image_labels(filename):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1,如:test_image/1.jpg 0
:param filename:
:return:
'''
images_list = []
labels_list = []
with open(filename) as f:
lines = f.readlines()
for line in lines:
# rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
content = line.rstrip().split(' ')
name = content[0]
labels = []
for value in content[1:]:
labels.append(int(value))
images_list.append(name)
labels_list.append(labels)
return images_list, labels_list


def batch_test(filename, image_dir):
labels_nums = 2
batch_size = 4
resize_height = 200
resize_width = 200
image_list, label_list = load_image_labels(filename)
image_list=[os.path.join(image_dir,image_name) for image_name in image_list]

image_batch, labels_batch = get_batch_images(image_list=image_list,
label_list=label_list,
batch_size=batch_size,
labels_nums=labels_nums,
resize_height=resize_height, resize_width=resize_width,
one_hot=False, shuffle=True)
with tf.Session() as sess: # 开始一个会话
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(4):
# 在会话中取出images和labels
images, labels = sess.run([image_batch, labels_batch])
# 这里仅显示每个batch里第一张图片
show_image("image", images[0, :, :, :])
print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))

# 停止所有线程
coord.request_stop()
coord.join(threads)


if __name__ == "__main__":
image_dir = "./dataset/train"
filename = "./dataset/train.txt"
batch_test(filename, image_dir)

2.tf.data.Dataset数据读取机制:Pipeline机制

训练步骤时间是 CPU 预处理时间和加速器训练时间的总和

prefetch(必须放在最后)

     TensorFlow引入了tf.data.Dataset模块,使其数据读入的操作变得更为方便,而支持多线程(进程)的操作,也在效率上获得了一定程度的提高。使用tf.data.Dataset模块的pipline机制,可实现CPU多线程处理输入的数据,如读取图片和图片的一些的预处理,这样GPU可以专注于训练过程,而CPU去准备数据。

    参考资料:


(五星推荐)TensorFlow全新的数据读取方式:Dataset API入门教程:​​http://baijiahao.baidu.com/s?id=1583657817436843385&wfr=spider&for=pc​

    Pipelining 将一个训练步骤的预处理和模型执行重叠。当加速器正在执行训练步骤 N 时,CPU 正在准备步骤 N + 1 的数据。这样做的目的是可以将步骤时间缩短到极致,包含训练以及提取和转换数据所需时间(而不是总和)。

    如果没有使用 pipelining,则 CPU 和 GPU / TPU 在大部分时间处于闲置状态:

TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和 tf.data.Dataset机制_数据

    而使用 pipelining 技术后,空闲时间显著减少:

TensorFlow数据读取机制:文件队列 tf.train.slice_input_producer和 tf.data.Dataset机制_ tf.data.Dataset_02

    tf.data API 通过 tf.data.Dataset.prefetch 转换提供了一个软件 pipelining 操作机制,该转换可用于将数据生成的时间与所消耗时间分离。特别是,转换使用后台线程和内部缓冲区,以便在请求输入数据集之前从输入数据集中预提取元素。因此,为了实现上面说明的 pipelining 效果,您可以将 prefetch(1) 添加为数据集管道的最终转换(如果单个训练步骤消耗 n 个元素,则添加 prefetch(n))。

    tf.data.Dataset.prefetch 提供了 software pipelining 机制。该函数解耦了 数据产生的时间 和 数据消耗的时间。具体来说,该函数有一个后台线程和一个内部缓存区,在数据被请求前,就从 dataset 中预加载一些数据(进一步提高性能)。prefech(n) 一般作为最后一个 transformation,其中 n 为 batch_size。 prefetch 的使用方法如下:   

    要将此更改应用于我们的运行示例,请将:

dataset = dataset.batch(batch_size=FLAGS.batch_size)
return dataset

    更改为:

dataset = dataset.batch(batch_size=FLAGS.batch_size)
dataset = dataset.prefetch(buffer_size=FLAGS.prefetch_buffer_size)
return dataset

    请注意,在任何时候只要有机会将 “制造者” 的工作与 “消费者” 的工作重叠,预取转换就会产生效益。前面的建议只是最常见的应用程序。

map

    使用 ​​tf.data.Dataset.map​​​,我们可以很方便地对数据集中的各个元素进行预处理。因为输入元素之间时独立的,所以可以在多个 CPU 核心上并行地进行预处理。​​map​​​ 变换提供了一个 ​​num_parallel_calls​​参数去指定并行的级别。

    准备批处理时,可能需要预处理输入元素。为此,tf.data API 提供了 tf.data.Dataset.map 转换,它将用户定义的函数(例如,运行示例中的 parse_fn)应用于输入数据集的每个元素。由于输入元素彼此独立,因此可以跨多个 CPU 内核并行化预处理。为了实现这一点,map 转换提供了 thenum_parallel_calls 参数来指定并行度。例如,下图说明了将 num_parallel_calls = 2 设置为 map 转换的效果:

dataset = dataset.map(map_func=parse_fn, num_parallel_calls=FLAGS.num_parallel_calls)

repeat

    repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

    如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常

实例代码1:dataset.make_initializable_iterator()

# -*-coding: utf-8 -*-
"""
@Project: fine tuning
@File : pipeline.py
@Author : panjq
@Date : 2018-11-17 20:18:54
"""
import tensorflow as tf
import numpy as np
import glob
import matplotlib.pyplot as plt

width=0
height=0
def show_image(title, image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()


def tf_read_image(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
if width>0 and height>0:
image = tf.image.resize_images(image, [height, width])
image = tf.cast(image, tf.float32) * (1. / 255.0) # 归一化
return image, label


def input_fun(files_list, labels_list, batch_size, shuffle=True):
'''
:param files_list:
:param labels_list:
:param batch_size:
:param shuffle:
:return:
'''
# 构建数据集
dataset = tf.data.Dataset.from_tensor_slices((files_list, labels_list))
if shuffle:
dataset = dataset.shuffle(100)
dataset = dataset.repeat() # 空为无限循环
dataset = dataset.map(tf_read_image, num_parallel_calls=4) # num_parallel_calls一般设置为cpu内核数量
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(2) # software pipelining 机制
return dataset


if __name__ == '__main__':
data_dir = 'dataset/image/*.jpg'
# labels_list = tf.constant([0,1,2,3,4])
# labels_list = [1, 2, 3, 4, 5]
files_list = glob.glob(data_dir)
labels_list = np.arange(len(files_list))
num_sample = len(files_list)
batch_size = 1
dataset = input_fun(files_list, labels_list, batch_size=batch_size, shuffle=False)

# 需满足:max_iterate*batch_size <=num_sample*num_epoch,否则越界
max_iterate = 3
with tf.Session() as sess:
iterator = dataset.make_initializable_iterator()
init_op = iterator.make_initializer(dataset)
sess.run(init_op)
iterator = iterator.get_next()
for i in range(max_iterate):
images, labels = sess.run(iterator)
show_image("image", images[0, :, :, :])
print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))

实例代码2:dataset.make_one_shot_iterator()

     上面的迭代器是使用dataset.make_initializable_iterator(),当然一个更简单的方法是使用dataset.make_one_shot_iterator(),下面的代码,可把dataset.make_one_shot_iterator()放在input_fun函数中,直接返回一个迭代器iterator

# -*-coding: utf-8 -*-
"""
@Project: fine tuning
@File : pipeline.py
@Author : panjq
@Date : 2018-11-17 20:18:54
"""
import tensorflow as tf
import numpy as np
import glob
import matplotlib.pyplot as plt

width = 224
height = 224


def show_image(title, image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()


def tf_read_image(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
if width > 0 and height > 0:
image = tf.image.resize_images(image, [height, width])
image = tf.cast(image, tf.float32) * (1. / 255.0) # 归一化
return image, label


def input_fun(files_list, labels_list, batch_size, shuffle=True):
'''
:param files_list:
:param labels_list:
:param batch_size:
:param shuffle:
:return:
'''
# 构建数据集
dataset = tf.data.Dataset.from_tensor_slices((files_list, labels_list))
if shuffle:
dataset = dataset.shuffle(100)
dataset = dataset.repeat() # 空为无限循环
dataset = dataset.map(tf_read_image, num_parallel_calls=4) # num_parallel_calls一般设置为cpu内核数量
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(2) # software pipelining 机制

iterator = dataset.make_one_shot_iterator()
return iterator


if __name__ == '__main__':
data_dir = './data/demo_data/*.jpg'
# labels_list = tf.constant([0,1,2,3,4])
# labels_list = [1, 2, 3, 4, 5]
files_list = glob.glob(data_dir)
labels_list = np.arange(len(files_list))
num_sample = len(files_list)
batch_size = 4
iterator = input_fun(files_list, labels_list, batch_size=batch_size, shuffle=False)

# 需满足:max_iterate*batch_size <=num_sample*num_epoch,否则越界
max_iterate = 3
with tf.Session() as sess:
# iterator = dataset.make_initializable_iterator()
# init_op = iterator.make_initializer(dataset)
# sess.run(init_op)
iterator = iterator.get_next()
for i in range(max_iterate):
images, labels = sess.run(iterator)
show_image("image", images[0, :, :, :])
print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))

实例代码3:产生用于训练的图和label

假设train.txt的数据如下:

0_8354.jpg 8 3 5 4
1_3621.jpg 3 6 2 1
2_4326.jpg 4 3 2 6
3_7711.jpg 7 7 1 1
# -*-coding: utf-8 -*-
"""
@Project: verification_code
@File : dataset.py
@Author : panjq
@Date : 2019-03-03 18:45:13
"""
import tensorflow as tf
import numpy as np
import glob
import os
import matplotlib.pyplot as plt
from utils import file_processing,image_processing

print("TF Version:{}".format(tf.__version__))

resize_height = 0 # 指定存储图片高度
resize_width = 0 # 指定存储图片宽度

def load_image_labels(filename):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签1,如:test_image/1.jpg 0 2
:param filename:
:return:
'''
images_list=[]
labels_list=[]
with open(filename) as f:
lines = f.readlines()
for line in lines:
#rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
content=line.rstrip().split(' ')
name=content[0]
labels=[]
for value in content[1:]:
labels.append(int(value))
images_list.append(name)
labels_list.append(labels)
return images_list,labels_list

def show_image(title, image):
'''
显示图片
:param title: 图像标题
:param image: 图像的数据
:return:
'''
# plt.figure("show_image")
# print(image.dtype)
plt.imshow(image)
plt.axis('on') # 关掉坐标轴为 off
plt.title(title) # 图像题目
plt.show()

def tf_resize_image(image, width=0, height=0):
if (width is None) or (height is None): # 错误写法:resize_height and resize_width is None
return image
image = tf.image.resize_images(image, [height, width])
return image


def tf_read_image(file, width, height):
image_string = tf.read_file(file)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
image=tf_resize_image(image, width, height)
image = tf.cast(image, tf.float32) * (1. / 255.0) # 归一化
return image

def map_read_image(files_list, labels_list):
tf_image=tf_read_image(files_list,resize_width,resize_height)
return tf_image,labels_list

def input_fun(files_list, labels_list, batch_size, shuffle=True):
'''
:param orig_image:
:param dest_image:
:param batch_size:
:param num_epoch:
:param shuffle:
:return:
'''
# 构建数据集
dataset = tf.data.Dataset.from_tensor_slices((files_list, labels_list))#TF version>=1.4
# dataset = tf.contrib.data.Dataset.from_tensor_slices((files_list, labels_list))#TF version<1.4

if shuffle:
dataset = dataset.shuffle(100)
dataset = dataset.repeat() # 空为无限循环
# dataset = dataset.map(map_read_image, num_parallel_calls=4) # num_parallel_calls一般设置为cpu内核数量
dataset = dataset.map(map_read_image) # num_parallel_calls一般设置为cpu内核数量

dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(2) # software pipelining 机制
dataset = dataset.make_one_shot_iterator()
return dataset


def get_image_data(images_list, image_dir,labels_list, batch_size, re_height, re_width, shuffle=False):
global resize_height
global resize_width
resize_height = re_height # 指定存储图片高度
resize_width = re_width # 指定存储图片宽度
image_list = [os.path.join(image_dir, name) for name in images_list]
dataset = input_fun(image_list, labels_list, batch_size, shuffle)
return dataset

if __name__ == '__main__':
filename='../dataset/train.txt'
image_dir="E:/TensoFlow/verification_code/dataset/train"
images_list, labels_list=load_image_labels(filename)
batch_size = 4
dataset=get_image_data(images_list, image_dir,labels_list, batch_size, re_height=None, re_width=None, shuffle=False)
# 需满足:max_iterate*batch_size <=num_sample*num_epoch,否则越界
max_iterate = 3
with tf.Session() as sess:
# dataset = dataset.make_initializable_iterator()
# init_op = dataset.make_initializer(dataset)
# sess.run(init_op)
dataset = dataset.get_next()
for i in range(max_iterate):
images, labels = sess.run(dataset)
print('shape:{},tpye:{},labels:{}'.format(images.shape, images.dtype, labels))
show_image("image", images[0, :, :, :])

实例代码4:产生用于训练的原始图和target目标图

# -*-coding: utf-8 -*-
"""
@Project: triple_path_networks
@File : load_data.py
@Author : panjq
@Date : 2018-11-29 11:40:37
"""

import tensorflow as tf

import glob
import numpy as np
import utils.image_processing as image_processing
import os
print("TF Version:{}".format(tf.__version__))

resize_height = 0 # 指定存储图片高度
resize_width = 0 # 指定存储图片宽度

def write_data(file, content_list, model):
with open(file, mode=model) as f:
for line in content_list:
f.write(line + "\n")

def read_data(file):
with open(file, mode="r") as f:
content_list = f.readlines()
content_list = [content.rstrip() for content in content_list]
return content_list

def read_train_val_data(filename,factor=0.8):
image_list = read_data(filename)
trian_num=int(len(image_list)*factor)
train_list = image_list[:trian_num]
val_list = image_list[trian_num:]
print("data info***************************")
print("--train nums:{}".format(len(train_list)))
print("--val nums:{}".format(len(val_list)))
print("************************************")
return train_list,val_list

def tf_resize_image(image,width=0,height=0):
if height>0 and width>0:
image = tf.image.resize_images(image, [height, width])
return image

def tf_read_image(file,width=224,height=224):
image_string = tf.read_file(file)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
if height>0 and width>0:
image = tf.image.resize_images(image, [height, width])
image = tf.cast(image, tf.float32) * (1. / 255.0) # 归一化
return image

def map_read_image(orig_file, dest_file):
orig_image=tf_read_image(orig_file,resize_width,resize_height)
dest_image=tf_read_image(dest_file,resize_width,resize_height)
return orig_image,dest_image

def input_fun(orig_image, dest_image, batch_size, shuffle=True):
'''
:param orig_image:
:param dest_image:
:param batch_size:
:param num_epoch:
:param shuffle:
:return:
'''
# 构建数据集
# dataset = tf.data.Dataset.from_tensor_slices((orig_image, dest_image))
dataset = tf.contrib.data.Dataset.from_tensor_slices((orig_image, dest_image))

if shuffle:
dataset = dataset.shuffle(100)
dataset = dataset.repeat() #空为无限循环
# dataset = dataset.map(map_read_image, num_parallel_calls=4) # num_parallel_calls一般设置为cpu内核数量
dataset = dataset.map(map_read_image) # num_parallel_calls一般设置为cpu内核数量

dataset = dataset.batch(batch_size)
# dataset = dataset.prefetch(2) # software pipelining 机制
return dataset

def get_image_data(file_list,orig_dir,dest_dir,batch_size,re_height,re_width,shuffle=False):
global resize_height
global resize_width
resize_height = re_height # 指定存储图片高度
resize_width = re_width # 指定存储图片宽度

orig_image_list=[os.path.join(orig_dir,name) for name in file_list]
dest_image_list=[os.path.join(dest_dir,name) for name in file_list]
dataset = input_fun(orig_image_list, dest_image_list, batch_size=batch_size,shuffle=shuffle)
return dataset

if __name__ == '__main__':
orig_dir="../dataset/blackberry/blackberry"
dest_dir="../dataset/blackberry/canon"
filename="../dataset/blackberry/filelist.txt"
batch_size = 1
file_list=read_data(filename)
dataset = get_image_data(file_list,orig_dir, dest_dir, batch_size=batch_size,shuffle=False)
# 迭代次数:max_iterate=10
# 需满足:max_iterate*batch_size <=num_sample*num_epoch,否则越界
max_iterate = 5
with tf.Session() as sess:
iterator = dataset.make_initializable_iterator()
init_op = iterator.make_initializer(dataset)
sess.run(init_op)
iterator = iterator.get_next()
for i in range(max_iterate):
orig_image, dest_image = sess.run(iterator)
image_processing.show_image("orig_image", orig_image[0, :, :, :])
image_processing.show_image("dest_image", dest_image[0, :, :, :])
print('orig_image:{},dest_image:{}'.format(orig_image.shape, dest_image.shape))

实例代码5: tf.data.Dataset.from_generator

    tf.data.Dataset.from_tensor_slices并不支持输入长度不同list,比如以下代码

t = [[4,2], [3,4,5]]
dataset = tf.data.Dataset.from_tensor_slices(t)

    将会报错:

ValueError: Argument must be a dense tensor: [[4, 2], [3, 4, 5]] - got shape [2], but wanted [2, 2].

    一种决解的方法,采用  tf.data.Dataset.from_generator生成器:

import tensorflow as tf
import numpy as np
data1 = np.array([[1], [2, 3], [3, 4]])
data2 = np.array([[10], [20, 30], [30, 40]])

def data_generator():
for el, e2 in zip(data1, data2):
yield el, e2

dataset = tf.data.Dataset.from_generator(data_generator,
output_types=(tf.int32, tf.int32),
output_shapes=(None, None)) #或者output_shapes=(tf.TensorShape([None]), tf.TensorShape([None]))

iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
max_iter = 3
with tf.Session() as sess:
for i in range(max_iter):
d1, d2 = sess.run(next_element)
print("d1:{}".format(d1))
print("d2:{}".format(d2))
print("******************************")

  输出:

d1:[1]
d2:[10]
******************************
d1:[2 3]
d2:[20 30]
******************************
d1:[3 4]
d2:[30 40]
******************************

参考资料:

​https://stackoverflow.com/questions/47580716/how-to-input-a-list-of-lists-with-different-sizes-in-tf-data-dataset​



3. 用Python循环产生批量数据batch

     这部分请参考本人的博客《Python循环产生批量数据batch》

    上面提到的方法都是在TensorFlow提高API接口完成的,数据预处理也必须依赖TensorFlow的API接口。当遇到一些特殊处理,而TensorFlow没有相应的接口时,就比较尴尬。比如要对输入的图像进行边缘检测处理时,这时能想到就是用OpenCV的Canny算法,一种简单的方法就是,每次sess.run()获得图像数据后,再调用OpenCV的Canny算法……是的,有的麻烦!

     这里提供一个我自己设计方法,不依赖TensorFlow,灵活性很强,你可以对数据进行任意的操作,可以使用OpenCV,numpy等任意的库函数。

   TXT文本如下,格式:图片名 label1 label2 ,注意label可以多个

1.jpg 1 11
2.jpg 2 12
3.jpg 3 13
4.jpg 4 14
5.jpg 5 15
6.jpg 6 16
7.jpg 7 17
8.jpg 8 18

    要想产生batch数据,关键是要用到Python的关键字yield,实现一个batch一个batch的返回数据,代码实现主要有两个方法:

def get_data_batch(inputs, batch_size=None, shuffle=False): ''' 循环产生批量数据batch :param inputs: list数据 :param batch_size: batch大小 :param shuffle: 是否打乱inputs数据 :return: 返回一个batch数据 '''def get_next_batch(batch): return batch.__next__()

    使用时,将数据传到 get_data_batch( )方法,然后使用get_next_batch( )获得一个batch数据,完整的Python代码如下:

# -*-coding: utf-8 -*-
"""
@Project: create_batch_data
@File : create_batch_data.py
@Author : panjq
@Date : 2017-10-27 18:20:15
"""
import math
import random
import os
import glob
import numpy as np


def get_data_batch(inputs, batch_size=None, shuffle=False):
'''
循环产生批量数据batch
:param inputs: list类型数据,多个list,请[list0,list1,...]
:param batch_size: batch大小
:param shuffle: 是否打乱inputs数据
:return: 返回一个batch数据
'''
rows = len(inputs[0])
indices = list(range(rows))
# 如果输入是list,则需要转为list
if shuffle:
random.seed(100)
random.shuffle(indices)
while True:
batch_indices = np.asarray(indices[0:batch_size]) # 产生一个batch的index
indices = indices[batch_size:] + indices[:batch_size] # 循环移位,以便产生下一个batch
batch_data = []
for data in inputs:
data = np.asarray(data)
temp_data=data[batch_indices] #使用下标查找,必须是ndarray类型类型
batch_data.append(temp_data.tolist())
yield batch_data

def get_data_batch2(inputs, batch_size=None, shuffle=False):
'''
循环产生批量数据batch
:param inputs: list类型数据,多个list,请[list0,list1,...]
:param batch_size: batch大小
:param shuffle: 是否打乱inputs数据
:return: 返回一个batch数据
'''
# rows,cols=inputs.shape
rows = len(inputs[0])
indices = list(range(rows))
if shuffle:
random.seed(100)
random.shuffle(indices)
while True:
batch_indices = indices[0:batch_size] # 产生一个batch的index
indices = indices[batch_size:] + indices[:batch_size] # 循环移位,以便产生下一个batch
batch_data = []
for data in inputs:
temp_data = find_list(batch_indices, data)
batch_data.append(temp_data)
yield batch_data


def find_list(indices, data):
out = []
for i in indices:
out = out + [data[i]]
return out


def get_list_batch(inputs, batch_size=None, shuffle=False):
'''
循环产生batch数据
:param inputs: list数据
:param batch_size: batch大小
:param shuffle: 是否打乱inputs数据
:return: 返回一个batch数据
'''
if shuffle:
random.shuffle(inputs)
while True:
batch_inouts = inputs[0:batch_size]
inputs = inputs[batch_size:] + inputs[:batch_size] # 循环移位,以便产生下一个batch
yield batch_inouts


def load_file_list(text_dir):
text_dir = os.path.join(text_dir, '*.txt')
text_list = glob.glob(text_dir)
return text_list


def get_next_batch(batch):
return batch.__next__()


def load_image_labels(finename):
'''
载图txt文件,文件中每行为一个图片信息,且以空格隔开:图像路径 标签1 标签1,如:test_image/1.jpg 0 2
:param test_files:
:return:
'''
images_list = []
labels_list = []
with open(finename) as f:
lines = f.readlines()
for line in lines:
# rstrip:用来去除结尾字符、空白符(包括\n、\r、\t、' ',即:换行、回车、制表符、空格)
content = line.rstrip().split(' ')
name = content[0]
labels = []
for value in content[1:]:
labels.append(float(value))
images_list.append(name)
labels_list.append(labels)
return images_list, labels_list


if __name__ == '__main__':
filename = './training_data/test.txt'
images_list, labels_list = load_image_labels(filename)

# 若输入为np.arange数组,则需要tolist()为list类型,如:
# images_list = np.reshape(np.arange(8*3), (8,3))
# labels_list = np.reshape(np.arange(8*3), (8,3))
# images_list=images_list.tolist()
# labels_list=labels_list.tolist()

iter = 5 # 迭代3次,每次输出一个batch个
# batch = get_data_batch([images_list, labels_list], batch_size=3, shuffle=False)
batch = get_data_batch2(inputs=[images_list,labels_list], batch_size=5, shuffle=True)

for i in range(iter):
print('**************************')
batch_images, batch_labels = get_next_batch(batch)
print('batch_images:{}'.format(batch_images))
print('batch_labels:{}'.format(batch_labels))

   运行输出结果为:

**************************
batch_images:['1.jpg', '2.jpg', '3.jpg']
batch_labels:[[1.0, 11.0], [2.0, 12.0], [3.0, 13.0]]
**************************
batch_images:['4.jpg', '5.jpg', '6.jpg']
batch_labels:[[4.0, 14.0], [5.0, 15.0], [6.0, 16.0]]
**************************
batch_images:['7.jpg', '8.jpg', '1.jpg']
batch_labels:[[7.0, 17.0], [8.0, 18.0], [1.0, 11.0]]
**************************
batch_images:['2.jpg', '3.jpg', '4.jpg']
batch_labels:[[2.0, 12.0], [3.0, 13.0], [4.0, 14.0]]
**************************
batch_images:['5.jpg', '6.jpg', '7.jpg']
batch_labels:[[5.0, 15.0], [6.0, 16.0], [7.0, 17.0]]

Process finished with exit code 0

 


4.参考资料:


[4]《​​tf.data API,构建高性能 TensorFlow 输入管道​​》

 

 

标签:slice,image,labels,list,batch,tf,机制,resize
From: https://blog.51cto.com/u_15764210/5982858

相关文章