首页 > 其他分享 >聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现

聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现

时间:2023-01-01 11:07:39浏览次数:64  
标签:nn area self IoU Pytorch 聊一聊 视觉 Average channel


聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现

注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。注意力机制起初是作为自然语言处理中的工作​​Attention Is All You Need​​​被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,​​SENET-Squeeze-and-Excitation Networks​​是注意力机制在计算机视觉中应用的早期工作之一,并获得了2017年imagenet, 同时也是最后一届Imagenet比赛的冠军,后面就又出现了各种各样的注意力机制,应用在计算机视觉的任务中,今天我们就来一起聊一聊计算机视觉中常用的注意力机制以及他们对应的Pytorch代码实现,另外我还使用这些注意力机制做了一些目标检测的实验,实验效果我也一并放在博客中,大家可以一起对自己感兴趣的部分讨论讨论。

新出的手把手教程,感兴趣的兄弟们快去自己动手试试看!

​​手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程_dejahu的博客-博客​​

这里是我数据集的基本情况,这里我使用的是交通标志检测的数据集

CocoDataset Train dataset with number of images 2226, and instance counts: 
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| category | count | category | count | category | count | category | count | category | count |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| 0 [red_tl] | 1465 | 1 [arr_s] | 1133 | 2 [arr_l] | 638 | 3 [no_driving_mark_allsort] | 622 | 4 [no_parking_mark] | 1142 |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+

baseline选择的是fasterrcnn,实验的结果如下:

Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.341
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.502
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.400
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.115
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.473
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.655
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.156
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.726

如果大家遇到论文下载比较慢

推荐使用中科院的 arxiv 镜像: ​​http://xxx.itp.ac.cn​​​, 国内网络能流畅访问
简单直接的方法是, 把要访问 arxiv 链接中的域名从 ​​​https://arxiv.org​​​ 换成 ​​http://xxx.itp.ac.cn​​ , 比如:

从 ​​https://arxiv.org/abs/1901.07249​​​ 改为 ​​http://xxx.itp.ac.cn/abs/1901.07249​

1. SeNet: Squeeze-and-Excitation Attention

论文地址:https://arxiv.org/abs/1709.01507

  • 网络结构
    对通道做注意力机制,通过全连接层对每个通道进行加权。

聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现_人工智能

  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SEAttention(nn.Module):

def __init__(self, channel=512, reduction=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
se = SEAttention(channel=512, reduction=8)
output = se(input)
print(output.shape)
  • 实验结果
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.338
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.511
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.375
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.126
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.458
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.696
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.163
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.551
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.758

2. (有用)CBAM: Convolutional Block Attention Module

论文地址:​​CBAM: Convolutional Block Attention Module​

  • 网络结构
    对通道方向上做注意力机制之后再对空间方向上做注意力机制
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ChannelAttention(nn.Module):
def __init__(self, channel, reduction=16):
super().__init__()
self.maxpool = nn.AdaptiveMaxPool2d(1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.se = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, bias=False),
nn.ReLU(),
nn.Conv2d(channel // reduction, channel, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()

def forward(self, x):
max_result = self.maxpool(x)
avg_result = self.avgpool(x)
max_out = self.se(max_result)
avg_out = self.se(avg_result)
output = self.sigmoid(max_out + avg_out)
return output


class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
self.sigmoid = nn.Sigmoid()

def forward(self, x):
max_result, _ = torch.max(x, dim=1, keepdim=True)
avg_result = torch.mean(x, dim=1, keepdim=True)
result = torch.cat([max_result, avg_result], 1)
output = self.conv(result)
output = self.sigmoid(output)
return output


class CBAMBlock(nn.Module):

def __init__(self, channel=512, reduction=16, kernel_size=49):
super().__init__()
self.ca = ChannelAttention(channel=channel, reduction=reduction)
self.sa = SpatialAttention(kernel_size=kernel_size)

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

def forward(self, x):
b, c, _, _ = x.size()
residual = x
out = x * self.ca(x)
out = out * self.sa(out)
return out + residual


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
kernel_size = input.shape[2]
cbam = CBAMBlock(channel=512, reduction=16, kernel_size=kernel_size)
output = cbam(input)
print(output.shape)
  • 实验结果
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.364
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.544
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.425
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.137
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.499
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.674
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.185
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.590
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.755

3. BAM: Bottleneck Attention Module

论文地址:https://arxiv.org/pdf/1807.06514.pdf

  • 网络结构
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)


class ChannelAttention(nn.Module):
def __init__(self, channel, reduction=16, num_layers=3):
super().__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
gate_channels = [channel]
gate_channels += [channel // reduction] * num_layers
gate_channels += [channel]

self.ca = nn.Sequential()
self.ca.add_module('flatten', Flatten())
for i in range(len(gate_channels) - 2):
self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i + 1]))
self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i + 1]))
self.ca.add_module('relu%d' % i, nn.ReLU())
self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))

def forward(self, x):
res = self.avgpool(x)
res = self.ca(res)
res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
return res


class SpatialAttention(nn.Module):
def __init__(self, channel, reduction=16, num_layers=3, dia_val=2):
super().__init__()
self.sa = nn.Sequential()
self.sa.add_module('conv_reduce1',
nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
self.sa.add_module('relu_reduce1', nn.ReLU())
for i in range(num_layers):
self.sa.add_module('conv_%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
out_channels=channel // reduction, padding=1, dilation=dia_val))
self.sa.add_module('bn_%d' % i, nn.BatchNorm2d(channel // reduction))
self.sa.add_module('relu_%d' % i, nn.ReLU())
self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))

def forward(self, x):
res = self.sa(x)
res = res.expand_as(x)
return res


class BAMBlock(nn.Module):

def __init__(self, channel=512, reduction=16, dia_val=2):
super().__init__()
self.ca = ChannelAttention(channel=channel, reduction=reduction)
self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
self.sigmoid = nn.Sigmoid()

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

def forward(self, x):
b, c, _, _ = x.size()
sa_out = self.sa(x)
ca_out = self.ca(x)
weight = self.sigmoid(sa_out + ca_out)
out = (1 + weight) * x
return out


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
bam = BAMBlock(channel=512, reduction=16, dia_val=2)
output = bam(input)
print(output.shape)
  • 实验结果

4. (有用)ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

论文地址:https://arxiv.org/pdf/1910.03151.pdf

  • 网络结构
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init
from collections import OrderedDict


class ECAAttention(nn.Module):

def __init__(self, kernel_size=3):
super().__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
self.sigmoid = nn.Sigmoid()

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

def forward(self, x):
y = self.gap(x) # bs,c,1,1
y = y.squeeze(-1).permute(0, 2, 1) # bs,1,c
y = self.conv(y) # bs,1,c
y = self.sigmoid(y) # bs,1,c
y = y.permute(0, 2, 1).unsqueeze(-1) # bs,c,1,1
return x * y.expand_as(x)


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
eca = ECAAttention(kernel_size=3)
output = eca(input)
print(output.shape)
  • 实验结果
2021-12-17 12:18:08,911 - mmdet - INFO - 
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.360
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.545
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.414
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.141
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.489
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.432
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.432
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.432
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.184
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.748

5. SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS

论文地址:https://arxiv.org/pdf/2102.00240.pdf

  • 网络结构
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter


class ShuffleAttention(nn.Module):

def __init__(self, channel=512, reduction=16, G=8):
super().__init__()
self.G = G
self.channel = channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sigmoid = nn.Sigmoid()

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

@staticmethod
def channel_shuffle(x, groups):
b, c, h, w = x.shape
x = x.reshape(b, groups, -1, h, w)
x = x.permute(0, 2, 1, 3, 4)

# flatten
x = x.reshape(b, -1, h, w)

return x

def forward(self, x):
b, c, h, w = x.size()
# group into subfeatures
x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w

# channel_split
x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w

# channel attention
x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1
x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1
x_channel = x_0 * self.sigmoid(x_channel)

# spatial attention
x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w
x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w
x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w

# concatenate along channel axis
out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w
out = out.contiguous().view(b, -1, h, w)

# channel shuffle
out = self.channel_shuffle(out, 2)
return out


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
se = ShuffleAttention(channel=512, G=8)
output = se(input)
print(output.shape)
  • 实验结果
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.350
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.523
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.479
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.662
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.160
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.733

6. Polarized Self-Attention: Towards High-quality Pixel-wise Regression

论文地址:https://arxiv.org/abs/2107.00782

  • 网络结构
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class ParallelPolarizedSelfAttention(nn.Module):

def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))

def forward(self, x):
b, c, h, w = x.size()

# Channel-only Self-Attention
channel_wv = self.ch_wv(x) # bs,c//2,h,w
channel_wq = self.ch_wq(x) # bs,1,h,w
channel_wv = channel_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
channel_wq = channel_wq.reshape(b, -1, 1) # bs,h*w,1
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1) # bs,c//2,1,1
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
1).reshape(
b, c, 1, 1) # bs,c,1,1
channel_out = channel_weight * x

# Spatial-only Self-Attention
spatial_wv = self.sp_wv(x) # bs,c//2,h,w
spatial_wq = self.sp_wq(x) # bs,c//2,h,w
spatial_wq = self.agp(spatial_wq) # bs,c//2,1,1
spatial_wv = spatial_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2) # bs,1,c//2
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv) # bs,1,h*w
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w)) # bs,1,h,w
spatial_out = spatial_weight * x
out = spatial_out + channel_out
return out


class SequentialPolarizedSelfAttention(nn.Module):

def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))

def forward(self, x):
b, c, h, w = x.size()

# Channel-only Self-Attention
channel_wv = self.ch_wv(x) # bs,c//2,h,w
channel_wq = self.ch_wq(x) # bs,1,h,w
channel_wv = channel_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
channel_wq = channel_wq.reshape(b, -1, 1) # bs,h*w,1
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1) # bs,c//2,1,1
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
1).reshape(
b, c, 1, 1) # bs,c,1,1
channel_out = channel_weight * x

# Spatial-only Self-Attention
spatial_wv = self.sp_wv(channel_out) # bs,c//2,h,w
spatial_wq = self.sp_wq(channel_out) # bs,c//2,h,w
spatial_wq = self.agp(spatial_wq) # bs,c//2,1,1
spatial_wv = spatial_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2) # bs,1,c//2
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv) # bs,1,h*w
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w)) # bs,1,h,w
spatial_out = spatial_weight * channel_out
return spatial_out


if __name__ == '__main__':
input = torch.randn(1, 512, 7, 7)
psa = SequentialPolarizedSelfAttention(channel=512)
output = psa(input)
print(output.shape)
  • 实验结果
2021-12-16 20:30:36,981 - mmdet - INFO - 
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.522
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.385
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.170
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.743

7. Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

论文地址:https://arxiv.org/pdf/1905.09646.pdf

  • 网络结构
    主要是用在语义分割上,所以在检测上的效果一般,没有带来多少提升
  • Pytorch代码
import numpy as np
import torch
from torch import nn
from torch.nn import init


class SpatialGroupEnhance(nn.Module):

def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()

def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)

def forward(self, x):
b, c, h, w = x.shape
x = x.view(b * self.groups, -1, h, w) # bs*g,dim//g,h,w
xn = x * self.avg_pool(x) # bs*g,dim//g,h,w
xn = xn.sum(dim=1, keepdim=True) # bs*g,1,h,w
t = xn.view(b * self.groups, -1) # bs*g,h*w

t = t - t.mean(dim=1, keepdim=True) # bs*g,h*w
std = t.std(dim=1, keepdim=True) + 1e-5
t = t / std # bs*g,h*w
t = t.view(b, self.groups, h, w) # bs,g,h*w

t = t * self.weight + self.bias # bs,g,h*w
t = t.view(b * self.groups, 1, h, w) # bs*g,1,h*w
x = x * self.sig(t)
x = x.view(b, c, h, w)

return x


if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
sge = SpatialGroupEnhance(groups=8)
output = sge(input)
print(output.shape)
  • 实验结果
2021-12-16 21:39:42,785 - mmdet - INFO - 
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.342
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.381
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.117
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.155
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.565
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.718

8. Coordinate Attention for Efficient Mobile Network Design

论文地址:https://arxiv.org/abs/2103.02907

  • 网络结构
    主要应用在轻量级网络上,在resnet系列上效果不好。
  • Pytorch代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)

def forward(self, x):
return self.relu(x + 3) / 6


class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)

def forward(self, x):
return x * self.sigmoid(x)


class CoordAtt(nn.Module):
def __init__(self, inp, oup, reduction=32):
super(CoordAtt, self).__init__()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))

mip = max(8, inp // reduction)

self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()

self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

def forward(self, x):
identity = x

n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)

y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)

x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)

a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()

out = identity * a_w * a_h

return out
  • 实验结果
2021-12-16 19:04:16,776 - mmdet - INFO - 
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.340
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.386
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.457
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.632
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.162
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.546
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.716

9. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

论文地址: https://arxiv.org/abs/2112.05561

  • 网络结构
    计算量特别大,效果一般
  • Pytorch代码
class GAM_Attention(nn.Module):
def __init__(self, in_channels, out_channels, rate=4):
super(GAM_Attention, self).__init__()

self.channel_attention = nn.Sequential(
nn.Linear(in_channels, int(in_channels / rate)),
nn.ReLU(inplace=True),
nn.Linear(int(in_channels / rate), in_channels)
)

self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
nn.BatchNorm2d(int(in_channels / rate)),
nn.ReLU(inplace=True),
nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
nn.BatchNorm2d(out_channels)
)

def forward(self, x):
# print(x)
b, c, h, w = x.shape
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
x_channel_att = x_att_permute.permute(0, 3, 1, 2)

x = x * x_channel_att

x_spatial_att = self.spatial_attention(x).sigmoid()
out = x * x_spatial_att
# print(out)

return out
  • 实验结果
2021-12-16 16:14:20,693 - mmdet - INFO - 
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.350
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.530
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.399
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.131
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.481
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.683
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.171
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.575
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.745

更多注意力

参考:https://github.com/xmu-xiaoma666/External-Attention-pytorch

另外还有一些用在语义分割上面的结构,这里就不测试了,大家可以自行下去测试

双路注意力机制-DANET

论文标题:Fu_Dual_Attention_Network_for_Scene_Segmentation

论文地址:https://openaccess.thecvf.com/content_CVPR_2019/papers/Fu_Dual_Attention_Network_for_Scene_Segmentation_CVPR_2019_paper.pdf

时间:2019

相当于之前是并行的结构,现在改成了串行的结构然后做特征的concat

聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现_人工智能_02

聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现_注意力机制_03

位置注意力-CCNET

在上面的danet上改的,主要是解决计算量的问题, 通过十字交叉的结构来解决

论文标题:CCNet: Criss-Cross Attention for Semantic Segmentation

论文地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_CCNet_Criss-Cross_Attention_for_Semantic_Segmentation_ICCV_2019_paper.pdf

时:2019

聊一聊计算机视觉中常用的注意力机制 附Pytorch代码实现_深度学习_04

找到我

你可以通过这些方式来寻找我。

B站:​​肆十二-​

知乎:​​肆十二 ​

微博:​​肆十二-​

现在关注以后就是老朋友喽!

标签:nn,area,self,IoU,Pytorch,聊一聊,视觉,Average,channel
From: https://blog.51cto.com/u_15754889/5982778

相关文章

  • PyTorch数据集处理
    数据样本处理的代码可能会变得杂乱且难以维护,因此理想状态下我们应该将模型训练的代码和数据集代码分开封装,以获得更好的代码可读性和模块化代码。PyTorch提供了两个基本方......
  • 真知灼见|AI视觉的发展趋势与应用(上)
    ​计算机视觉概述1963年,计算机视觉之父拉里·罗伯茨首次描述了用计算机从2D图像中理解和构造物体3D信息的过程,开创了计算机视觉领域。随后在20世纪的缓慢进展中,科学家逐渐将......
  • 真知灼见|AI视觉的发展趋势与应用(下)
    ​计算机视觉在金融行业的应用近几年计算机视觉算法在金融领域应用越来越多,在支付、双录、ICR等场景都发挥着举足轻重的作用。该技术不断赋能金融领域,提升金融领域的服务效......
  • pytorch的基本使用
    1.Anaconda配置pytorch环境1.创建环境在AnacondaPrompt工具中输入condacreate-npyTorch,报如下错误。解决方法:为Anaconda配置国内镜像源。1.方式1:使用conda......
  • 一次SQL调优 聊一聊 SQLSERVER 数据页
    一:背景1.讲故事最近给一位朋友做​​SQL慢语句​​优化,花了些时间调优,遗憾的是SQLSERVER非源码公开,玩起来不是那么顺利,不过从这次经历中我觉得明年的一个重大任务就是......
  • 3D视觉算法初学概述
    SLAM是SimultaneousLocalizationandMapping的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器(单目、双目、RGB-D相机、Lidar)的主体,在没有环境先验......
  • 计算机视觉与图形学-神经渲染专题-非刚体NeRF
    《FastNon-RigidRadianceFieldsfromMonocularizedData》链接:https://graphics.tu-bs.de/publications/kappel2022fast摘要单目动态场景下的3D重建和新颖视图合成最......
  • 聊一聊 SQLSERVER 的行不能跨页
    一:背景1.讲故事相信有很多朋友在学习SQLSERVER的时候都听说过这句话,但大多都是记忆为主,最近在研究SQLSERVER,所以我们从底层存储的角度来深入理解下。二:理解数据页......
  • pytorch的FashionMNIST
    目录pytorch的FashionMNIST项目从加载数据到训练模型评估到模型保存模型加载及预测importtorchfromtorchimportnnfromtorch.utils.dataimportDataLoaderfromtorchvi......
  • Pytorch优化过程展示:tensorboard
      训练模型过程中,经常需要追踪一些性能指标的变化情况,以便了解模型的实时动态,例如:回归任务中的MSE、分类任务中的Accuracy、生成对抗网络中的图片、网络模......