在进行机器学习项目时,特别是在处理深度学习和神经网络时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个非常基本的GPU也会胜过CPU。
但是你应该买哪种GPU呢?本文将总结需要考虑的相关因素,以便可以根据预算和特定的建模要求做出明智的选择。
为什么 GPU 比 CPU 更适合机器学习?
CPU(中央处理器)是计算机的主力,它非常灵活,不仅需要处理来自各种程序和硬件的指令,并且处理速度也有一定的要求。为了在这种多任务环境中表现出色,CPU 具有少量且灵活快速的处理单元(也称为核)。
GPU(图形处理单元)GPU在多任务处理方面不那么灵活。但它可以并行执行大量复杂的数学计算。这是通过拥有更多数量的简单核心(数千个到上万)来实现的,这样可以同时处理许多简单的计算。
并行执行多个计算的要求非常适合于:
- 图形渲染——移动的图形对象需要不断地计算它们的轨迹,这需要大量不断重复的并行数学计算。
- 机器和深度学习——大量的矩阵/张量计算,GPU可以并行处理。
- 任何类型的数学计算,可以拆分为并行运行。
在Nvidia自己的博客上已经总结了CPU和GPU的主要区别:
https://avoid.overfit.cn/post/de4ad15755634900b0826dc244579472
标签:并行执行,学习,深度,GPU,数学计算,CPU,最好 From: https://www.cnblogs.com/deephub/p/17009695.html