首页 > 其他分享 >移动的点

移动的点

时间:2022-08-15 10:46:14浏览次数:82  
标签:yi xi 个点 cdot 相遇 leq 移动

移动的点

二维平面中有 $n$ 个点。

每个点都在做着匀速运动,其中第 $i$ 个点在 $x$ 轴上的速度为 $V_{xi}$,在 $y$ 轴上的速度为 $V_{yi}$。

这些点从很久之前($−\infty$ 时刻)就存在,在无限的未来($+\infty$ 时刻)也将存在,并且会一直保持着它们的运动。

每个点都拥有一个属性值 $EX$,它记录了该点自诞生到现在与其他点相遇的次数,每当该点与其他点在某时某刻相遇,该值就会增加 $1$,关于该属性值,需注意:

  • 如果同一时刻同一地点,一个点与多个点相遇,则每个与它相遇的点都会使其 $EX$ 值增加 $1$。
  • 两个点发生相遇时,它们的 $EX$ 值都会增加。

由于每个点的运动速度都是恒定的,所以每个点的 $EX$ 值都会在某一时刻达到最大值,并且以后不会再发生变化。

也就是说,不妨设 $n$ 个点的 $EX$ 值之和为 $GX$,即 $GX = \sum\limits_{i=1}^{n} {{EX}_i}$,在某一时刻后,$GX$ 值也将达到最大值并不再增加。

十分巧合的是这 $n$ 个点会在某个时刻排列在同一条直线 $y=ax+b$ 上,每个点在该时刻的具体位置已知。

请你根据这些信息,计算 $GX$ 的最大值。

请注意,所有点的运动并不是从共线那一时刻开始的,所以在发生共线之前,$GX$ 的值可能已经大于 $0$ 了。

输入格式

第一行包含三个整数 $n,a,b$。

接下来 $n$ 行,每行包含三个整数 $x_i,V_{xi},V_{yi}$,其中 $x_i$ 表示第 $i$ 个点在发生共线时所在位置的 $x$ 坐标(由此信息以及之前给定的 $a$ 和 $b$ 的值,即可计算出其所在位置的 $y$ 坐标)。

保证在发生共线时,这 $n$ 个点不存在重合,也就是说输入满足对于所有 $(i,j)$,如果 $i \ne j$,则 $x_i \ne x_j$。

输出格式

输出一个整数,表示 $GX$ 的最大值。

数据范围

前三个测试点满足 $1 \leq n \leq 5$。
所有测试点满足 $1 \leq n \leq 2 \times {10}^{5}$,$1 \leq \left| a \right| \leq {10}^{9}$,$0 \leq \left| b \right| \leq {10}^{9}$,${−10}^{9} \leq x_i,V_{xi},V_{yi} \leq {10}^{9}$。

输入样例1:

4 1 1
1 -1 -1
2 1 1
3 1 1
4 -1 -1

输出样例1:

8

输入样例2:

3 1 0
-1 1 0
0 0 -1
1 -1 -2

输出样例2:

6

输入样例3:

3 1 0
0 0 0
1 0 0
2 0 0

输出样例3:

0

 

解题思路

  当全部点都在直线$y = ax + b$上时,任取两点坐标分别为$(x_i, y_i)$和$(x_j, y_j)$。假设这两个点在$t$时刻相遇,进行正交分解,此时横纵坐标相同,即

\begin{cases}
x_i + v_{xi} \cdot t &= x_j + v_{xj} \cdot t \\
ax_i + b + v_{yi} \cdot t &= ax_j + b + v_{yj} \cdot t
\end{cases}

约去变量$t$,有$$a \times \frac{x_j - x_i}{v_{yj} - v_{yi}} = \frac{x_j - x_i}{v_{xj} - v_{xi}}$$

  因为题目保证任意两点的横坐标不同,即$x_j \ne x_i$,因此约去分子得到$v_{yj} - a \cdot v_{xj} = v_{yi} - a \cdot v_{xi}$。记$w_k = v_{yk} - a \cdot v_{xk}$,因此如果两个点能够相遇,那么就有$w_i = w_j$。因此可以开个哈希表统计每个点的$w_k$,如果某个$w_k$有$n$个,意味着这$n$个点的每个点都与其余的$n-1$个点发生碰撞,这$n$个点的总碰撞次数为$n \times (n-1)$。当然还要考虑到如果两个点的相对速度为$0$,即有$v_{xi} = v_{xj},~ v_{yi} = v_{yj}$,那么此时$w_i = w_j$仍然成立,但显然这两个点是不会发生相遇的,因此我们还需要开个哈希表来统计每个点的$(v_{xk},~ v_{yk})$。如果某个有序对$(v_{xk},~ v_{yk})$出现了$m$次,在之前的哈希表我们对这$m$个点统计了$m \times (m-1)$次,因为这$m$个点的相对速度相同不可能相遇,因此需要减去之前统计的$m \times (m-1)$次。

  AC代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 typedef long long LL;
 5 typedef pair<int, int> PII;
 6 
 7 int main() {
 8     int n, a, b;
 9     scanf("%d %d %d", &n, &a, &b);
10     
11     unordered_map<LL, int> mp1; // 统计wi
12     map<PII, int> mp2;  // 统计(Vxi, Vyi)
13     
14     while (n--) {
15         int x, vx, vy;
16         scanf("%d %d %d", &x, &vx, &vy);
17         mp1[vy - 1ll * a * vx]++;
18         mp2[{vx, vy}]++;
19     }
20     
21     LL ret = 0;
22     for (auto &it : mp1) {
23         ret += it.second * (it.second - 1ll);
24     }
25     for (auto &it : mp2) {  // 减去相对速度为0的点
26         ret -= it.second * (it.second - 1ll);
27     }
28     printf("%lld", ret);
29     
30     return 0;
31 }

 

参考资料

  AcWing杯 - 第64场周赛:https://www.bilibili.com/video/BV1vY4y1c74i?spm_id_from=333.337.search-card.all.click

标签:yi,xi,个点,cdot,相遇,leq,移动
From: https://www.cnblogs.com/onlyblues/p/16586682.html

相关文章