首页 > 其他分享 >5.2.2 同角三角函数的基本关系

5.2.2 同角三角函数的基本关系

时间:2022-12-02 20:34:40浏览次数:59  
标签:5.2 frac 三角函数 qquad cos 同角 alpha tan sin

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步巩固,难度2颗星!

基础知识

同角三角函数基本关系式

\(\sin ^2 α+\cos ^2 α=1\) \(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}\)
解释
由三角函数的定义,如下图,\(α\)的终边与单位圆交于点\(P(x,y)\),
可知\(\sin α=y\),\(\cos α=x\), \(\tan \alpha=\frac{y}{x}=(x \neq 0)\).
过点\(P\)作\(PH⊥x\)轴,在\(Rt∆PHO\)中,\(OH^2+PH^2=OP^2=1\),
因此\(x^2+y^2=1\),即\(\sin ^2 α+\cos ^2 α=1\),
当\(α≠π/2+kπ(k∈Z)\)时, \(\tan \alpha=\frac{y}{x}=\frac{\sin \alpha}{\cos \alpha}\).
image.png
 

拓展

\((\sin α+\cos α)^2=1+2 \sin α \cdot \cos α\); \((\sin α-\cos α)^2=1-2 \sin α \cdot \cos α\).
 

基本方法

【题型1】利用三角函数基本关系式求值

【典题1】 已知\(α∈(0,π)\),\(\tan α=-2\),则\(\cos α=\) \(\underline{\quad \quad}\).
解析 方法1 \(∵\tan α=-2\), \(\therefore \frac{\sin \alpha}{\cos \alpha}=-2\),即\(\sin α=-2\cos α\),
又 \(\sin ^2 \alpha+\cos ^2 \alpha=1 \Rightarrow \cos \alpha=\pm \frac{\sqrt{5}}{5}\),
\(∵α∈(0,π)\),且\(\tan α=-2<0\),
\(∴α\)为第二象限角,\(∴\cos α<0\),
\(∴\cos α=-\frac{\sqrt{5}}{5}\).
方法2 \(∵\tan α=-2\),构造直角三角形\(Rt△ABC\)如下图,
image.png
在直角三角形中, \(\cos \alpha=\frac{B C}{A C}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\),
\(∵α∈(0,π)\),且\(\tan α=-2<0\),
\(∴α\)为第二象限角,
\(∴\cos α<0\), \(∴\cos α=-\frac{\sqrt{5}}{5}\).
点拨
① 若知\(\sin α\)、\(\cos α\)、\(\tan α\)三者中一个的值,可求另外两个的值,即“知一得二”;
② 在非解答题中用方法二解题速度更快些,只是要多留意三角函数的符号.
 

【典题2】 已知\(\tan α=-2\),求下列各式的值:
  (1) \(\frac{4 \sin \alpha-2 \cos \alpha}{5 \cos \alpha+3 \sin \alpha}\);   (2) \(\frac{1}{4} \sin ^2 \alpha+\frac{2}{5} \cos ^2 \alpha\).
解析 方法1 由\(\tan α=-2\),得\(\sin α=-2\cos α\).
(1) \(\frac{4 \sin \alpha-2 \cos \alpha}{5 \cos \alpha+3 \sin \alpha}=\frac{-8 \cos \alpha-2 \cos \alpha}{5 \cos \alpha-6 \cos \alpha}=10\).
(2) \(\frac{1}{4} \sin ^2 \alpha+\frac{2}{5} \cos ^2 \alpha=\frac{\frac{1}{4} \sin ^2 \alpha+\frac{2}{5} \cos ^2 \alpha}{\sin ^2 \alpha+\cos ^2 \alpha}=\frac{\cos ^2 \alpha+\frac{2}{5} \cos ^2 \alpha}{4 \cos ^2 \alpha+\cos ^2 \alpha}=\frac{7}{25}\).
方法2 \(∵\tan α=-2\),\(∴\cos α≠0\).
(1) \(\frac{4 \sin \alpha-2 \cos \alpha}{5 \cos \alpha+3 \sin \alpha}=\frac{4 \tan \alpha-2}{5+3 \tan \alpha}=\frac{4 \times(-2)-2}{5+3 \times(-2)}=10\).
(2) \(\frac{1}{4} \sin ^2 \alpha+\frac{2}{5} \cos ^2 \alpha=\frac{\frac{1}{4} \sin ^2 \alpha+\frac{2}{5} \cos ^2 \alpha}{\sin ^2 \alpha+\cos ^2 \alpha}=\frac{\frac{1}{\tan ^2 \alpha+\frac{2}{5}}}{\tan ^2 \alpha+1}=\frac{7}{25}\).
点拨 方法2 中当分式\(\frac{f(x)}{g(x)}\)中\(f(x)\)、\(g(x)\)关于\(\cos α\)、\(\sin α\)的“齐次化式”,分子分母同除以\(\cos α\)或\(\sin α\).第(2)问中巧妙的使用了\(\sin ^2 α+\cos ^2 α=1\).
 

【典题3】 已知 \(\sin \alpha+\cos \alpha=-\frac{1}{5}\).
  (1)求\(\sin α\cdot \cos α\)的值;
  (2)若\(\frac{π}{2}<α<π\),求\(\frac{1}{\sin \alpha}-\frac{1}{\cos (2 \pi+\alpha)}\)的值.
解析 (1)\(∵\sin \alpha+\cos \alpha=-\frac{1}{5}\) ①, \(\therefore(\sin \alpha+\cos \alpha)^2=\frac{1}{25}\),
即\(1+2 \sin \alpha \cos \alpha=\frac{1}{25}\), \(\therefore \sin \alpha \cdot \cos \alpha=-\frac{12}{25}\) ,
(2)由(1)得,\((\sin \alpha-\cos \alpha)^2=1-2 \sin \alpha \cos \alpha=\frac{49}{25}\),
又 \(\frac{π}{2}<α<π\),\(∴\sin α-\cos α>0\),
\(\therefore \sin \alpha-\cos \alpha=\frac{7}{5}\) ②.
\(\therefore \frac{1}{\sin \alpha}-\frac{1}{\cos (2 \pi+\alpha)}=\frac{1}{\sin \alpha}-\frac{1}{\cos \alpha}=\frac{\cos \alpha-\sin \alpha}{\sin \alpha \cos \alpha}=\frac{35}{12}\) .
点拨
① \((\sin α+\cos α)^2=1+2 \sin α \cdot \cos α\); \((\sin α-\cos α)^2=1-2 \sin α \cdot \cos α\).
②\(\sin θ+\cos θ\)、\(\sin θ-\cos θ\)、\(\sin θ\cos θ\)也是“知一得二”.
 

【巩固练习】

1.已知\(α\)是第四象限角, \(\cos \alpha=\frac{12}{13}\),则\(\sin α\)等于(  )
 A. \(\frac{5}{13}\) \(\qquad \qquad\) B. \(-\frac{5}{13}\) \(\qquad \qquad\) C. \(\frac{5}{12}\) \(\qquad \qquad\) D. \(-\frac{5}{12}\)
 

2.已知\(\alpha=-\frac{1}{2}\),则\(\frac{2 \sin \alpha \cos \alpha}{\sin ^2 \alpha-\cos ^2 \alpha}\)的值是(  )
 A. \(\frac{4}{3}\) \(\qquad \qquad\) B.\(3\) \(\qquad \qquad\) C. \(-\frac{4}{3}\) \(\qquad \qquad\) D.\(-3\)
 

3.如果角\(θ\)满足\(\sin \theta+\cos \theta=\sqrt{2}\),那么\(\tan \theta+\frac{1}{\tan \theta}\)的值是(  )
  A.\(-1\) \(\qquad \qquad\) B.\(-2\) \(\qquad \qquad\) C.\(1\) \(\qquad \qquad\) D.\(2\)
 

4.若\(\alpha \in\left(\frac{\pi}{2}, \pi\right)\),且\(\cos ^2 \alpha-\sin \alpha=\frac{1}{4}\),则\(\tan α\)的值等于(  )
 A. \(-\frac{\sqrt{3}}{3}\) \(\qquad \qquad\) B. \(\frac{\sqrt{3}}{3}\) \(\qquad \qquad\) C. \(\sqrt{3}\) \(\qquad \qquad\) D. \(-\sqrt{3}\)
 

5.已知\(\tan \alpha=\frac{4}{3}\),且\(α\)是第三象限角,求\(\sin α\),\(\cos α\)的值.
 

6.已知\(\sin θ\)、\(\cos θ\)是关于\(x\)的方程 \(x^2-2 \sqrt{2} a x+a=0\)的两个根.
(1)求实数\(a\)的值;(2)若\(θ∈\left(-\frac{\pi}{2},0\right)\),求\(\sin θ-\cos θ\)的值.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(∵α\)是第四象限角,
    \(\therefore \sin \alpha=-\sqrt{1-\cos ^2 \alpha}=-\sqrt{1-\left(\frac{12}{13}\right)^2}=-\frac{5}{13}\).

  2. 答案 \(A\)
    解析 原式 \(=\frac{2 \tan \alpha}{\tan ^2 \alpha-1}=\frac{2 \times\left(-\frac{1}{2}\right)}{\left(-\frac{1}{2}\right)^2-1}=\frac{4}{3}\).

  3. 答案 \(D\)
    解析 \(\because \sin \theta+\cos \theta=\sqrt{2}\),
    \(\therefore 1+2 \sin \theta \cos \theta=2\),即 \(\sin \theta \cos \theta=\frac{1}{2}\),
    那么 \(\tan \theta+\frac{1}{\tan \theta}=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta \cos \theta}=2\),
    故选:\(D\).

  4. 答案 \(A\)
    解析 \(∵\cos ^2 \alpha-\sin \alpha=\frac{1}{4}\),\(∴4(1-\sin ^2⁡α )-4\sin α-1=0\),
    即\(A\)\(4 \sin ^2⁡α+4\sin α-3=0\),\(∴\)解得 \(\sin \alpha=\frac{1}{2}\)或 \(\sin \alpha=-\frac{3}{2}\)(舍).
    \(∵\alpha \in\left(\frac{\pi}{2}, \pi\right)\), \(\therefore \alpha=\frac{5 \pi}{6}\), \(\therefore \tan \alpha=\tan \frac{5 \pi}{6}=-\frac{\sqrt{3}}{3}\).
    故选:\(A\).

  5. 答案 \(\cos \alpha=-\frac{3}{5}\), \(\sin \alpha=-\frac{4}{5}\).
    解析 由 \(\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{4}{3}\)得\(\sin α=\frac{4}{3} \cos α\).①
    又\(\sin ^2 α+\cos ^2 α=1\),②
    由①②得 \(\frac{16}{9} \cos ^2 \alpha+\cos ^2 \alpha=1\),即 \(\cos ^2 \alpha=\frac{9}{25}\).
    \(∵α\)在第三象限,
    \(\therefore \cos \alpha=-\frac{3}{5}\), \(\sin \alpha=\frac{4}{3} \cos \alpha=-\frac{4}{5}\).

  6. 答案 (1) \(a=-\frac{1}{4}\)或 \(\frac{1}{2}\);(2) \(-\frac{\sqrt{6}}{2}\).
    解析 (1)\(∵\sin θ\)、\(\cos θ\)是关于\(x\)的方程 \(x^2-2 \sqrt{2} a x+a=0\)的两个根,
    \(\therefore \sin \theta+\cos \theta=2 \sqrt{2} a\) ①,\(\sin θ\cos θ=a\) ②,
    \(△=b^2-4ac=8a^2-4a≥0\),即\(a≤0\)或\(a≥\frac{1}{2}\),
    \(∴(\sin θ+\cos θ)^2=1+2\sin θ\cos θ=1+2a=8a^2\),
    即\(8a^2-2a-1=0\),解得\(a=-\frac{1}{4}\)或 \(\frac{1}{2}\).
    (2)\(∵θ∈\left(-\frac{\pi}{2},0 \right)\),
    \(∴\sin θ<0\),\(\cos θ>0\),可得\(\sin θ\cos θ=a<0\),由(1)可得\(a=-\frac{1}{4}\),
    \(∴\sin θ\cos θ=-\frac{1}{4}\),
    \(∴(\sin θ-\cos θ)^2=1-2\sin θ\cos θ=1+\frac{1}{2}=\frac{3}{2}\),
    又\(\sin θ-\cos θ<0\),\(∴ \sin θ-\cos θ=-\frac{\sqrt{6}}{2}\).
    (注意判断\(\sin θ-\cos θ\)的正负)

 

【题型2】三角函数式的化简

【典题1】 化简下列各式:
  (1) \(\frac{\sqrt{1-2 \sin 130^{\circ} \cos 130^{\circ}}}{\sin 130^{\circ}+\sqrt{1-\sin ^2 130^{\circ}}}\);
  (2) \(\sin ^2 \alpha \cdot \tan \alpha+2 \sin \alpha \cdot \cos \alpha+\frac{\cos ^2 \alpha}{\tan \alpha}\).
解析 (1)原式 \(=\frac{\sqrt{\sin ^2 130^{\circ}-2 \sin 130^{\circ} \cos 130^{\circ}+\cos ^2 130^{\circ}}}{\sin 130^{\circ}+\sqrt{\cos ^2 130^{\circ}}}\)
\(=\frac{\left|\sin 130^{\circ}-\cos 130^{\circ}\right|}{\sin 130^{\circ}+\left|\cos 130^{\circ}\right|}=\frac{\sin 130^{\circ}-\cos 130^{\circ}}{\sin 130^{\circ}-\cos 130^{\circ}}=1\).
(2)原式 \(=\sin ^2 \alpha \cdot \frac{\sin \alpha}{\cos \alpha}+2 \sin \alpha \cos \alpha+\cos ^2 \alpha \cdot \frac{\cos \alpha}{\sin \alpha}\)
\(=\frac{\sin ^4 \alpha+2 \sin ^2 \alpha \cos ^2 \alpha+\cos ^4 \alpha}{\cos \alpha \sin \alpha}\)\(=\frac{\left(\sin ^2 \alpha+\cos ^2 \alpha\right)^2}{\sin \alpha \cos \alpha}=\frac{1}{\sin \alpha \cos \alpha}\).
点拨 遇到正切一般化为正弦与余弦,"切化弦"的方法.
 

【巩固练习】

1.若角\(α\)的终边在第二象限,则\(\frac{\sin \alpha}{\sqrt{1-\sin ^2 \alpha}}+\frac{\sqrt{1-\cos ^2 \alpha}}{\cos \alpha}\) 的值等于(  )
 A.\(2\) \(\qquad \qquad\) B.\(-2\) \(\qquad \qquad\) C.\(0\) \(\qquad \qquad\) D.\(-2\)或\(2\)
 

参考答案

  1. 答案 \(C\)
    解析 \(∵α\)是第二象限角,
    \(∴\sin α>0\),\(\cos α<0\).
    \(\therefore \frac{\sin \alpha}{\sqrt{1-\sin ^2 \alpha}}+\frac{\sqrt{1-\cos ^2 \alpha}}{\cos \alpha}=\frac{\sin \alpha}{|\cos \alpha|}+\frac{|\sin \alpha|}{\cos \alpha}=-\tan \alpha+\tan \alpha=0\).

 

【题型3】三角恒等式的证明

【典题1】 求证: \(\frac{1-2 \sin 2 x \cos 2 x}{\cos ^2 2 x-\sin ^2 2 x}=\frac{1-\tan 2 x}{1+\tan 2 x}\).
证明 左边 \(=\frac{\cos ^2 2 x+\sin ^2 2 x-2 \sin 2 x \cos 2 x}{\cos ^2 2 x-\sin ^2 2 x}=\frac{(\cos 2 x-\sin 2 x)^2}{(\cos 2 x-\sin 2 x)(\cos 2 x+\sin 2 x)}\)
\(=\frac{\cos 2 x-\sin 2 x}{\cos 2 x+\sin 2 x}=\frac{1-\tan 2 x}{1+\tan 2 x}=\)右边,
所以原式成立.
 

【巩固练习】

1.求证: \(2(1-\sin \alpha)(1+\cos \alpha)=(1-\sin \alpha+\cos \alpha)^2\).

参考答案

  1. 证明 右边\(=[(1-\sin α)+\cos α]^2\)
    \(=(1-\sin ⁡α)^2 +\cos ^2⁡α+2 \cos ⁡α(1-\sin ⁡α )\)
    \(=1-2\sin α+\sin ^2 α+\cos ^2 α+2\cos α(1-\sin α)\)
    \(=2-2\sin α+2\cos α(1-\sin α)\)
    \(=2(1-\sin α)(1+\cos α)=\)左边,
    所以原式成立.

 

分层练习

【A组---基础题】

1.已知\(\cos α=-\frac{12}{13}\),\(α∈(π,2π)\),则\(\tan α=\) (  )
 A. \(\frac{12}{5}\) \(\qquad \qquad\) B. \(\frac{5}{12}\) \(\qquad \qquad\) C. \(-\frac{5}{12}\) \(\qquad \qquad\) D. \(-\frac{12}{5}\)
 

2.已知\(\tan \alpha=\frac{3}{4}\),则\(\frac{\sin \alpha-2 \cos \alpha}{2 \sin \alpha+\cos \alpha}=\)(  )
 A.\(-2\) \(\qquad \qquad\) B.\(2\) \(\qquad \qquad\) C.\(-\frac{1}{2}\) \(\qquad \qquad\) D. \(\frac{1}{2}\)
 

3.如果角\(θ\)满足\(\sin θ+\cos θ=\sqrt{2}\),那么\(\tan \theta+\frac{1}{\tan \theta}\)的值是(  )
 A.\(-1\) \(\qquad \qquad\) B.\(-2\) \(\qquad \qquad\) C.\(1\) \(\qquad \qquad\) D.\(2\)
 

4.已知角\(α\)是锐角,若\(\sin α\),\(\cos α\)是关于\(x\)的方程\(x^2+mx+n=0\)的两个实数根,则实数\(m\)和\(n\)一定满足(  )
 A.\(m^2-4n=0\) \(\qquad \qquad\) B.\(m^2=2n+1\) \(\qquad \qquad\) C.\(m+n+1≤0\) \(\qquad \qquad\) D.\(mn>0\)
 

5.已知\(α\)是第三象限角,\(4\sin ^2 α-3\sin α\cos α-5\cos ^2 α=1\),则\(\tan α=\)(  )
 A.\(-1\)或\(2\) \(\qquad \qquad\) B. \(\frac{1}{2}\) \(\qquad \qquad\) C.\(1\) \(\qquad \qquad\) D.\(2\)
 

6.已知\(α∈(π,\frac{3\pi}{2})\),\(\tan α=2\),则\(\cos α=\) \(\underline{\quad \quad}\).
 

7.已知\(\sin α+\cos α=\frac{1}{5}\),则\(\sin α\cos α=\) \(\underline{\quad \quad}\).
 

8.若\(\sin α=\frac{\sqrt{5}}{5}\),则\(\sin ^4 α-\cos ^4 α=\) \(\underline{\quad \quad}\).
 

9.已知\(α\)为第二象限角,则\(\frac{2 \sin \alpha}{\sqrt{1-\cos ^2 \alpha}}+\cos \alpha \sqrt{1+\tan ^2 \alpha}\)的值是\(\underline{\quad \quad}\).
 

10.已知\(\mid \tan \theta+\frac{1}{\tan \theta}=3\),求\(\tan ^2 \theta+(\sin \theta-\cos \theta)^2+\frac{1}{\tan ^2 \theta}\)的值.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(∵\cos α=-\frac{12}{13}\),\(α∈(π,2π)\),则\(α∈(π,\frac{3\pi}{2})\),\(∴\sin α<0\).
    又\(\sin ^2 α+\cos ^2 α=1\),
    \(\therefore \sin ^2 \alpha=1-\cos ^2 \alpha=\frac{25}{169}\),
    \(\therefore \sin \alpha=-\frac{5}{13}\), \(\therefore \tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{5}{12}\).

  2. 答案 \(C\)
    解析 \(∵\tan \alpha=\frac{3}{4}\) , \(\therefore \frac{\sin \alpha-2 \cos \alpha}{2 \sin \alpha+\cos \alpha}=\frac{\tan \alpha-2}{2 \tan \alpha+1}=-\frac{1}{2}\).故选:\(C\).

  3. 答案 \(D\)
    解析 \(∵\sin θ+\cos θ=\sqrt{2}\),\(∴1+2\sin θ\cos θ=2\),即\(\sin θ\cos θ= \frac{1}{2}\),
    那么 \(\tan \theta+\frac{1}{\tan \theta}=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta \cos \theta}=2\),
    故选:\(D\).

  4. 答案 \(B\)
    解析 由题可得\(\sin α+\cos α=-m\),\(\sin α\cos α=n\),
    因为\(1=\sin ^2 α+\cos ^2 α=(\sin α+\cos α)^2-2\sin α\cos α=m^2-2n\),
    \(∴m^2=2n+1\),
    故选:\(B\).

  5. 答案 \(D\)
    解析 由\(4\sin ^2 α-3\sin α\cos α-5\cos ^2 α=1\)
    可得 \(\frac{4 \sin ^2 \alpha-3 \sin \alpha \cos \alpha-5 \cos ^2 \alpha}{\sin ^2 \alpha+\cos ^2 \alpha}=1\).
    分子,分母同时除以\(\cos ^2⁡α\),得 \(\frac{4 \tan ^2 \alpha-3 \tan \alpha-5}{\tan ^2 \alpha+1}=1\),
    解得\(\tan α=-1\)或\(\tan α=2\).
    又\(∵α\)是第三象限角,
    \(∴\tan α>0\).\(∴\tan α=2\).

  6. 答案 \(-\frac{\sqrt{5}}{5}\)
    解析 \(∵α∈\left(π,\frac{3\pi}{2}\right)\),\(\tan α=2\),
    \(∴\cos α<0\), \(\frac{\sin \alpha}{\cos \alpha}=2\).
    又\(\sin ^2 α+\cos ^2 α=1\),
    \(∴5 \cos ^2⁡α=1\),\(∴\cos α=-\frac{\sqrt{5}}{5}\).

  7. 答案 \(-\frac{12}{25}\)
    解析 \(∵\sin α+\cos α=\frac{1}{5}\),
    \(∴\)两边平方可得:\(\sin ^2 α+\cos ^2 α+2\sin α\cos α=\frac{1}{25}\),
    \(∴1+2\sin α\cos α=\frac{1}{25}\),则\(\sin α\cos α=-\frac{12}{25}\).

  8. 答案 \(-\frac{3}{5}\)
    解析 \(\sin ^4⁡α-\cos ^4⁡α=(\sin ^2⁡α+\cos ^2⁡α )(\sin ^2⁡α-\cos ^2⁡α )\)
    \(=\sin ^2⁡α-\cos ^2⁡α=\sin ^2⁡α-(1-\sin ^2⁡α )\)
    \(=2 \sin ^2 \alpha-1=2 \times\left(\frac{\sqrt{5}}{5}\right)^2-1=-\frac{3}{5}\).

  9. 答案 \(1\)
    解析 \(∵α\)为第二象限角,\(\cos α<0\),
    \(\therefore \frac{2 \sin \alpha}{\sqrt{1-\cos ^2 \alpha}}+\cos \alpha \sqrt{1+\tan ^2 \alpha}=\frac{2 \sin \alpha}{\sin \alpha}+\cos \alpha \sqrt{\frac{1}{\cos ^2 \alpha}}\)\(=2+\cos \alpha\left|\frac{1}{\cos \alpha}\right|=2-1=1\).
    答案为:\(1\).

  10. 答案 \(\frac{22}{3}\)
    解析 由已知得 \(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=3\),
    \(\therefore \frac{\sin ^2 \theta+\cos ^2 \theta}{\sin \theta \cos \theta}=3\), \(\therefore \sin \theta \cos \theta=\frac{1}{3}\).
    \(∴\)原式 \(=\left(\tan \theta+\frac{1}{\tan \theta}\right)^2-2+(1-2 \sin \theta \cos \theta)=3^2-2+1-\frac{2}{3}=\frac{22}{3}\).

 

【B组---提高题】

1.已知 \(\frac{1-\cos x+\sin x}{1+\cos x+\sin x}=-2\),则\(\tan ⁡x\)的值为\(\underline{\quad \quad}\).
 

2.已知\(3\sin α+4\cos α=5\),求\(\tan α\).
 
 

3.已知\(0<x<π\),\(\sin x+\cos x=\frac{1}{4}\).
①求\(\sin x-\cos x\)的值;②求\(\sin ^3⁡x+\cos ^3⁡x\)的值.
 
 

参考答案

  1. 答案 \(\frac{4}{3}\)
    解析 由条件,得\(1-\cos x+\sin x=-2-2\cos x-2\sin x\),
    整理得:\(3\sin x+\cos x=-3\),
    即 \(\cos x=-3\sin x-3\) ①,
    代入\(\sin ^2 x+\cos ^2 x=1\)中,得\(\sin ^2 x+(-3\sin x-3)^2=1\),
    整理得:\(5\sin ^2 x+9\sin x+4=0\),即\((\sin x+1)(5\sin x+4)=0\),
    解得\(\sin x=-1\)(舍)或\(\sin x=-\frac{4}{5}\),
    把 \(\sin x=-\frac{4}{5}\),代入①,得\(\cos x=-\frac{3}{5}\),所以\(\tan x=\frac{4}{3}\).

  2. 答案 \(\frac{3}{4}\)
    解析 方法1 解方程组法
    由\(\left\{\begin{array}{c} 3 \sin \alpha+4 \cos \alpha=5 \\ \sin ^2 \alpha+\cos ^2 \alpha=1 \end{array}\right.\)得\(25 \sin ^2⁡α-30\sin α+9=0\),
    解得\(\sin α=\frac{3}{5}\),
    \(∴\cos α=\frac{4}{5}\) , \(∴\tan α=\frac{3}{4}\).
    方法2 “对偶式”法
    设\(4\sin α-3\cos α=x\),等式两边平方得\(16 \sin ^2⁡α-24\sin α\cos α+9 \cos ^2⁡α=x^2\) ①
    将\(3\sin α+4\cos α=5\)两边平方,得\(9 \sin ^2⁡α+24\sin α\cos α+16 \cos ^2⁡α=25\) ②
    由①+②得,\(25=x^2+25\),解得\(x=0\),
    \(∴4\sin α-3\cos α=0\), \(∴4\sin α=3\cos α\), \(∴\tan α=\frac{3}{4}\).
    方法3 “弦化切”法
    将\(3\sin α+4\cos α=5\)两边平方,得\(9 \sin ^2⁡α+24\sin α\cos α+16 \cos ^2⁡α=25\)
    即\(\frac{9 \sin ^2 \alpha+24 \sin \alpha \cos \alpha+16 \cos ^2 \alpha}{\sin ^2 \alpha+\cos ^2 \alpha}=25\),
    即 \(\frac{9 \tan ^2 \alpha+24 \tan \alpha+16}{\tan ^2 \alpha+1}=25\),解得 \(\tan α=\frac{3}{4}\).

  3. 答案 ① \(\frac{\sqrt{31}}{4}\); ② \(\frac{47}{128}\).
    解析 已知\(0<x<π\), \(\sin x+\cos x=\frac{1}{4}\).
    所以 \((\sin x+\cos x)^2=\frac{1}{16}\),解得 \(\sin x \cos x=-\frac{15}{32}\),
    所以\(\frac{\pi}{2}<x<π\).
    ① \(\sin x-\cos x=|\sin x-\cos x|=\sqrt{(\sin x+\cos x)^2-4 \sin x \cos x}\)
    \(=\sqrt{\frac{1}{16}-4 \times\left(-\frac{15}{32}\right)}=\frac{\sqrt{31}}{4}\).
    ② \(\sin ^3 x+\cos ^3 x=(\sin x+\cos x)\left(\sin ^2 x-\sin x \cos x+\cos ^2 x\right)\)\(=\frac{1}{4} \times\left(1+\frac{15}{32}\right)=\frac{47}{128}\).

 

【C组---拓展题】

1.已知函数\(y=\cos ^2⁡x+a\sin ⁡x-a^2+2a+5\)有最大值\(2\),求实数\(a\)的值.
 
 

参考答案

  1. 答案 \(a=-\frac{4}{3}\)或 \(a=\frac{3+\sqrt{21}}{2}\).
    解析 \(y=-\sin ^2⁡x+a\sin ⁡x-a^2+2a+6\),令\(\sin ⁡x=t\),\(t∈[-1,1]\),
    则\(y=-t^2+at-a^2+2a+6\),对称轴为\(t=\frac{a}{2}\),
    当\(\frac{a}{2}<-1\),即\(a<-2\)时,\([-1,1]\)是函数\(y\)的递减区间, \(y_{\max }=\left.y\right|_{t=-1}=-a^2+a+5=2 \text {, }\),
    得 \(a^2-a-3=0\), \(a=\frac{1 \pm \sqrt{13}}{2}\)与\(a<-2\)矛盾;
    当\(\frac{a}{2}>1\),即\(a>2\)时,\([-1,1]\)是函数\(y\)的递增区间, \(y_{\max }=\left.y\right|_{t=-1}=-a^2+a+5=2\),
    得\(a^2-3a-3=0\), \(a=\frac{3 \pm \sqrt{21}}{2}\),
    而\(a>2\),即 \(a=\frac{3 + \sqrt{21}}{2}\);
    当\(-1≤\frac{a}{2}≤1\) ,即\(-2≤a≤2\)时, \(y_{\max }=\left.y\right|_{t=\frac{a}{2}}=-\frac{3}{4} a^2+2 a+6=2\),
    得\(3a^2-8a-16=0\),\(a=4\)或\(a=-\frac{4}{3}\),
    而\(-2≤a≤2\),即\(a=-\frac{4}{3}\);
    \(∴a=-\frac{4}{3}\)或 \(a=\frac{3+\sqrt{21}}{2}\).

标签:5.2,frac,三角函数,qquad,cos,同角,alpha,tan,sin
From: https://www.cnblogs.com/zhgmaths/p/16945538.html

相关文章

  • 5.2.1 三角函数的概念
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • 真实感渲染:三角函数、向量和矩阵
    大家好~本课程为“真实感渲染”的线上课程,从0开始,介绍相关的图形学算法和数学基础,给出详细的数学推导、伪代码和实现代码,最终带领大家开发出基于物理的渲染器线上课程资料......
  • pip9.0.1 安装TensorFlow 1.15.2 失败
    pip3installtensorflow==1.15.2Collectingtensorflow==1.15.2Couldnotfindaversionthatsatisfiestherequirementtensorflow==1.15.2(fromversions:0.12.1......
  • 5.2.5 快速排序——代码解说
    需思考一个巧妙的办法,在这个数组里头,原地进行这个数组元素倒换,实现参照元素在它该到达的位置去存放,左边的元素都比它小,右边的元素都比它大,不分配动态数组。保证整体左边小,......
  • 5.2.1 归并排序——总体思路
    折半查找快速是因为每次只查一半,另一半不管把一个任务拆成两个部分只完成其中一部分,是一个很有效的办法当元素多了,运算、时间消耗等会比较复杂数组前一半让它有序,后一半......
  • Maven导入Spring5.2.6.RELEASE所有jar包
    <properties><spring.version>5.2.6.RELEASE</spring.version></properties><dependencies><!--springstart--><!--springcorestart--><depe......
  • 最完美WIN10_Pro_22H2.19045.2311软件选装纯净版VIP37.6
    【系统简介】==============================================================1.本次更新母盘来UUP_WIN10_Pro_22H2.19045.2311。2.不支持更新,更新后有些东西又会回来,玩过......
  • centeros7升级python2.5.7到python3.5.2
    centos7python2.7.5升级到3.5.2下载python3.5.2wgethttps://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz安装解压:tar-zxvfPython-3.5.2.tgz进入解压目录:cdPyt......
  • 11.25.2
    #include<stdio.h>intmain(){ inta,n,i; unsignedlonglongsum=0; scanf("%d",&n); a=2; for(i=1;i<=n;i++) { sum+=a; a=a*10+a%10; } printf("%llu",sum)......
  • Seata 1.5.2 源码学习(事务执行)
    关于全局事务的执行,虽然之前的文章中也有所涉及,但不够细致,今天再深入的看一下事务的整个执行过程是怎样的。1.TransactionManagerio.seata.core.model.TransactionManag......