首页 > 其他分享 >Law of Large numbers

Law of Large numbers

时间:2022-11-26 16:22:24浏览次数:64  
标签:infty le int sum Large mu ge numbers Law

\(\newcommand \e \epsilon \newcommand \ov \overline\)

Law of Large numbers

Weak Law of Large numbers

Let \(X_1,X_2,\cdots\) be i.i.d. with

\[xP(|X_i| > x) \to 0 \quad as \ x \to \infty \]

Let \(S_n = X_1 + \cdots + X_n\) and let \(\mu_n = E(X_11_{|X_1| \le n})\). Then \(S_n / n - \mu_n \to 0\) in probability.

Strong Law of Large numbers

Let \(X_1,X_2,\cdots\) be pairwise independent identically distriuted random variables with \(E|X_i| < \infty\). Let \(EX_i = \mu\) and \(S_n = X_1 + \cdots + X_n\). Then \(S_n /n \to \mu\) a.s. as \(n \to \infty\).

You can see the defferences between Weak and Strong Law.

Weak i.i.d. to \(\mu_n\) no in probability
Large pairwise i.i.d. to \(\mu\) \(E|X_i| < \infty\) a.s.

Proof of Weak Law of Large numbers

Defination: Uncorrelated

\(E(X_iX_j) = EX_iEX_j\) whenever \(i \ne j\).

Lamma: \(X_1 ,\cdots\) have \(E(X_i^2) < \infty\) and be uncorrelated. Then

\[var(X_1+\cdots + X_n) = var(X_1) + \cdots + var(X_n) \]

Proof:

\[\begin{aligned} &var(X_1 + \cdots + X_n)\\ =&E((\sum X_i - \mu_i)^2)\\ =&\sum E(X_i - \mu_i)^2 + \sum_{i\ne j}E(X_i-\mu_i)(X_j-\mu_j)\\ =&\sum E(X_i - \mu_i)^2 + \sum_{i\ne j}E(X_iX_j-\mu_j X_i-\mu_iX_j + \mu_i \mu_j)\\ =&\sum E(X_i - \mu_i)^2 \end{aligned} \]

Weak Law for triangular arrays.

For each n let \(X_{n,k}\), \(1 \le k \le n\), be independent. Let \(b_n > 0\) with \(b_n \to \infty\), and let \(\overline X_{n,k} = X_{n,k}1_{|X_{n,k}| \le b_n}\). Suppose that as \(n \to \infty\).

  • \(\sum_{i=1}^n P(|X_{n,k} > b_n|) \to 0\)
  • \(b_n^{-2}\sum_{k =1}^n E\overline X^2_{n,k} \to 0\)

Let \(S_n = X_{n,1} + \cdots + X_{n,n}\) and put \(a_n = \sum_{i=1}^n E\overline X_{n,k}\) then

\[(S_n - a_n) / b_n \to 0 \quad \text{in probability} \]

Proof:

\(P(\frac{S_n - a_n}{b_n} > \epsilon) \le P(S_n \ne \overline S_n) + P(\frac{\overline S_n - a_n}{b_n} > \epsilon)\)

\(P(S_n \ne \overline S_n) = \sum P(|X_{n,k}| > b_n) \to 0\).

\[\begin{aligned} &P(\frac{\overline S_n - a_n}{b_n} > \epsilon)\\ =&P(\ov S_n - a_n > \e b_n)\\ \le &(\e b_n)^{-2}E(\ov S_n - a_n)^2\\ = &(\e b_n)^{-2}\sum var(\ov X_{n,i})\\ \le &(\e b_n)^{-2}\sum E(\ov X^2_{n,i})\\ \to& 0 \end{aligned} \]

proof for weak law

Using Triangular:

let \(b_n = n\), \(X_{i,j} = X_j\).

  • \(\sum_{i=1}^nP(|X_i > n|)=nP(|X_i > n|) \to 0\).
  • \(n^{-2}\sum_{k=1}^n E\ov {X_k}^2 = n^{-1}E\ov X_1^2\).

The second condition is not so easy to show:

Lemma: If \(Y \ge 0\) and \(p > 0\), then \(E(Y^{p})=\int_0^{\infty}py^{p-1}P(Y > y) d y\).

\[E(Y^p) = \int_\Omega Y^p d P \\ =\int_\Omega \int_0^Y py^{p-1}dy dP\\ =\int_0^\infty py^{p-1}\int_{Y \ge y}dP dy\\ =\int_0^\infty py^{p-1}P(Y \ge y) dy\\ \]

Note: \(\int P(X =x) dx = 0\). for continous function, \(P(X = x) = 0\). for discrete function \(dx = 0\).

Hence \(n^{-1}E\ov X_1^2 = 2n^{-1}\int _0^n yP(\ov X_1 > y) dy\le 2n^{-1}\int_0^n yP(X_1 > y) dy\)

\(yP(X_1 > y) \to 0\), there exists \(N\), for \(n > N\), \(xP(X_1 > x) <\e\). \(2n^{-1}\int_0^n yP(X_1 > y) dy= 2n^{-1}(\int_0^NyP(X_1 > y) + \int_N^nyP(X_1 > y)) \to 0\)

So it satisfied triangular array theorem.

by lemma \(xP(|X_1| > x) \to 0\) implies \(E|X_1|^{1-\e} < \infty\)(bijiefa maybe).

Proof of Strong Law of Large numbers

so long so hard...

Steps:

  • Borel-Cantelli Lamma
  • Kronecker Lamma
  • Kolmogorov's maximal inequality
  • Khintehine-Kolmogorov convergence theorem

Borel-Cantelli Lemma

notations:

\(\limsup A_n = \lim_{m \to \infty}\cup_{n = m}^{\infty}A_n = \{\omega \text{ that are in infinitely many }A_n\}\)

\(\liminf A_n = \lim_{m \to \infty} \cap _{n=m}^\infty A_n = \{\omega \text{ that are in all but finitely many }A_n\}\)

Borel-Cantelli lemma

if \(\sum_{n=1}^\infty P(A_n) < \infty\) then \(P(A_n\quad i.o.) = 0\)

Kronecker's Lemma

If \(a_n \uparrow \infty\) and $\sum_{n=1}^{\infty} x_n /a_n $ converges then \(a^{-1}_n \sum_{m=1}^n x_m \to 0\)

exists N s.t. \(\sum_{n=N}^{\infty} < \e\). \(a_n^{-1}\sum_{m=1}^n x_m =a_n^{-1}(\sum_{m=1}^{N-1}x_m +\sum_{m=N}^n x_m)\le a_n^{-1}S + \sum_{m=N}^n a_m^{-1}x_m \le a_n^{-1}S + 2\e \to 0\)

Kolmogorov's Maximal inequality

Suppose \(X_1,\cdots, X_n\) are independent with \(EX_i = 0\) and \(var(X_i) < \infty\). If \(S_n = X_1 + \cdots + X_n\).

then \(P(\max_{1 \le k \le n}|S_k| \ge x) \le x^{-2}var(S_n)\)

Remark: Chebyshev's inequality gives \(P(|S_n|\ge x)\le x^{-2}var(S_n)\).

Let \(A_k = \{|S_k| \ge x \text{ but } |S_j| < x \text{ for } j < k\}\). So \(A_k\) are disjoint and \((S_n-S_k)^2 \ge 0\).

\[ES^2_n \ge \sum_{k=1}^n\int_{A_k}S_n^2 dP = \sum_{k=1}^n \int_{A_k} S_k^2 + 2S_k(S_n-S_k) +(S_n-S_k)^2 dP\\ \ge\sum_{k=1}^n \int_{A_k} S_k^2 dP+ 2\sum_{k=1}^n \int_{A_k} S_k(S_n-S_k) dP \]

Notice that \(S_k1_{A_k} \in \sigma(X_1,\cdots,X_k)\), \((S_n-S_k) \in\sigma(X_{k+1},\cdots, X_n)\) are independent, since \(E(S_n-S_k) = 0\). so \(2\sum_{k=1}^n \int_{A_k} S_k(S_n-S_k) dP = 0\).

hence \(ES_n^2 \ge \sum_{k=1}^n \int_{A_k}S_k^2 dP\ge\sum_{k=1}^nx^2P(A_k)=x^2P(\max_{1\le k\le n}|S_k|\ge x)\).

Khintehine-Kolmogorov convergence theorem

\(X_1,\cdots\) are independent. \(E X_n = 0\). If \(\sum_{n=1}^\infty var(X_n) < \infty\). Then almost surely \(\sum_{i=1}^n X_i(\omega)\) converges to a limit.

Proof:

\(S_n = \sum_{n=1}^NX_n\), \(\forall N,M \in N\), as \(N \to \infty\)

\[\begin{aligned} &P(\max_{M \le m \le N}|S_m-S_M| \ge \e)\\ \le& \e^{-2}var(S_N-S_M)\\ =&\e^{-2}\sum_{n = M+1}^Nvar(X_n)\\ \to &\e^{-2}\sum_{n=M+1}^{\infty}var(X_n) \end{aligned} \]

hence as \(M \to \infty\), \(P(\max_{M \le m \le \infty}|S_m-S_M| \ge \e) \le \e^{-2}\sum_{n=M+1}^{\infty}var(X_n) \to 0\).

Let \(W_M = \sup_{n,m \ge M}|S_m-S_n|\)

\(P(W_M \ge 2\e) \le P(\sup_{m \ge M} |S_m-S_M|\ge \e)\to 0\).

almost surely \(W_M \downarrow 0\), let \(A_M = \{W_M > \e\}\), \(\forall n > m\), \(A_n \subseteq A_m\).

\(P(\limsup A_m) = 0 \Rightarrow W_m \to 0\) a.s.

almost surely $S_m(\omega) $ is a Cauchy sequence.

a.s. \(S_m(\omega)\) converges to a limit.

Proof for SLLN

Suppose \(EX_i = 0\).

resolve \(X_i\) into \((X_iI_{|X_i|\le i} - E[X_iI_{|X_i|\le i}])+(X_iI_{|X_i|> i} - E[X_iI_{|X_i|> i}])\)

Let \(Y_i = (X_iI_{|X_i|\le i} - E[X_iI_{|X_i|\le i}])\), \(Z_i = (X_iI_{|X_i|> i} - E[X_iI_{|X_i|> i}])\).

\(\frac1n \sum_{i=1}^n Y_i \to 0\) a.s.

\[\begin{aligned} \sum_{n=1}^{\infty}\frac{var(Y_n)}{n^2} \le & \sum_{n=1}^{\infty}\frac1{n^2} E[X_1^2I_{|X_1|\le n}]\\ =&E[X_1^2\sum_{n=1}^\infty\frac1{n^2}I_{|X_1|\le n}]\\ \le &E[X_1^2\sum_{n\ge |X_1|,n \ge1}^\infty\frac2{n(n+1)}]\\ \le &2E[X_1^2(\frac1{|X_1|}\and 1)]\\ \le & 2E[|X_1| + 1]\\ <&\infty \end{aligned} \]

so \(\sum_{i=1}^n\frac{Y_i}{i}\) converges to a limit.

by Kronecker Lemma, \(\frac1n\sum_{i=1}^n Y_i\to 0\) a.s.

\(\frac 1n\sum_{i=1}^n Z_i \to 0\)

\(E[X_i I_{|X_i| >i}] \to 0\), so \(\frac1n \sum E[X_i I_{|X_i| > i}] \to 0\).

now we show that \(X_i I_{|X_i| > i} ]\to 0\).

\(\sum_{i=1}^{\infty}P(|X_i| > i)\le \int_0^{\infty}P(|X_i| > t)d t = E|X_1|<\infty\).

by Bore-Cantelli Lemma \(P(|X_i| > i\ \ \ i.o.) = 0\), let \(N(\omega) = i\) s.t. \(\max_i\{X_i(\omega) > i\}\).

\(|\frac1n \sum_{i=1}^nX_iI_{|X_i|>i}|(w)\le \frac1n \sum_{i=1}^{N(w)}|X_i(w)|\to 0\)

Now we finish the prove.

The rate of convergence

Let \(X_1,X_2\cdots\) be i.i.d. random variables with \(EX_i = 0\) and \(EX_i^2 = \sigma^2 < \infty\). Let \(S_n = X_1 + \cdots + X_n\). If \(\e > 0\) then

\[S_n / n^{1/2}(\log n)^{1/2 + \e} \to 0 \]

This means \(\frac{\sqrt n}{(\log n)^{\frac 12+ \e}}(S_n/n-\mu)\to 0\) a.s.

Remark: the best possible is \(\limsup S_n/n^{1/2}(\log \log n)^{1/2} =\sigma \sqrt 2\)

KKCT -> \(\sum_{n=1}^\infty X_n/a_n\) converges a.s. by Krronecker Lemma \(\sum X_i / A_n\) converges to 0.

标签:infty,le,int,sum,Large,mu,ge,numbers,Law
From: https://www.cnblogs.com/tuagoale/p/16927652.html

相关文章

  • [AGC011E] Increasing Numbers
    \(\mathcalLink\)思维题。考虑将不降数不进位相加,则最终结果可以看成\(\sum_{i=0}^\inftya_i\cdot10^i\),其中\(a_i>a_{i+1}\)。显然,对于一种合法拆分,我们可以分成......
  • POJ3252 Round Numbers
    终于一遍就写对了.第一次没有注意读题导致了一个没有注意到什时候要开始统计.Code#include<iostream>#include<string>#defineintlonglongusingnamespacestd;......
  • [数学记录][sosdp]CF449D Jzzhu and Numbers
    前几天做arc时连做两道高维前缀和,今天去看dp题单时发现这东西居然叫sosdp,来刷一下板子。粘一篇找到的blog,感觉引入那里非常自然!linktoCF|linktoLuogu给......
  • [LeetCode] 2133. Check if Every Row and Column Contains All Numbers
    An nxn matrixis valid ifeveryrowandeverycolumncontains all theintegersfrom 1 to n (inclusive).Givenan nxn integermatrix matrix,re......
  • 84.柱状图中最大的矩形 largest-rectangle-in-histogram
    问题描述84.柱状图中最大的矩形解题思路首先,要找最大矩形,即要找每个heights[i]所能构成的矩形面积的最大值:heights[i]所能构成的最大矩形,左侧,右侧必定都是连续的大于......
  • 84. Largest Rectangle in Histogram
    Givenanarrayofintegers heights representingthehistogram'sbarheightwherethewidthofeachbaris 1,return theareaofthelargestrectangleinth......
  • Data length too large: 10710120, max payload: 8388608, channel: NettyChannel [c
    1、报错信息cause:java.io.IOException:Datalengthtoolarge:10710120,maxpayload:8388608,channel:NettyChannel[channel=[id:0x09396776,/10.195.2.51:48......
  • Kth Largest Element
    https://leetcode.cn/problems/kth-largest-element-in-an-array/   solution1:使用min-heap,找第k大的元素 classSolution:deffindKthLargest(self,nu......
  • UESTC 1272 Final Pan's prime numbers
    DescriptionFinalPanlikesprimenumbersverymuch.Oneday,hewanttofindthesuperprimenumbers.Aprimenumbers n(n>4)isasuperprimenumberonlyif ......
  • UESTC 1273 God Qing's circuital law
    DescriptionAsweallknow,GodQingisaverypowerfulACMer.Sheverylikejuniorsisterapprentice,butinUESTC-ACMteam,thereisnojuniorsisterapprentic......