首页 > 其他分享 >使用卷积神经网络实现简易的语音分类的对话系统

使用卷积神经网络实现简易的语音分类的对话系统

时间:2022-11-10 15:00:15浏览次数:47  
标签:file 卷积 shape 神经网络 pad 语音 wav model audio


一、思路

1.收集简单的语音词汇,数量越多越好,当做数据集。

2. 为每个词汇建立词汇内容的标签,建立一个字典,键值为文本词语,键为数字标签,训练时只能使用数字表示。

3.建立卷积神经网络或其他网络

4.提取音频特征,对应上标签进行训练,输出训练模型

5.利用输出的模型对音频文件进行预测

6.根据预测的结果,对应相应的回答的音频文件,做出应答。

1.数据集收集

使用卷积神经网络实现简易的语音分类的对话系统_神经网络


使用卷积神经网络实现简易的语音分类的对话系统_数据_02


使用卷积神经网络实现简易的语音分类的对话系统_数据_03


使用卷积神经网络实现简易的语音分类的对话系统_神经网络_04


说明:数据集过小,只是进行网络测试,实际数据较多;而且这里的音频数据都是通过软件合成的数据,比较理想,适合新人学习使用。

2. 建立一个映射字典

Dict_data = {
0:"吃饭",
1:"等一下",
2:"不吃了"
}

3.建立神经网络

model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(25*11,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.summary()

4.提取音频特征

def wav2mfcc(path, max_pad_size=11):
y, sr = librosa.load(path=path, sr=None, mono=False)
y = y[::3]
# 默认提取 20 帧
audio_mac = librosa.feature.mfcc(y=y,n_mfcc=25, sr=16000)
y_shape = audio_mac.shape[1]
if y_shape < max_pad_size:
pad_size = max_pad_size - y_shape
audio_mac = np.pad(audio_mac, ((0, 0), (0, pad_size)), mode='constant')
else:
audio_mac = audio_mac[:, :max_pad_size]
return audio_mac

5.利用输出的模型对音频文件预测

import numpy as np
import librosa
from glob import glob
from tensorflow.keras.models import Sequential,load_model
from wav import Dict_data
from playsound import playsound

WAV_DICT = {
0:"../info/eat.wav",
1:"../info/waiting.wav",
2:"../info/stop.wav"
}
def wav2mfcc(path, max_pad_size=11):
y, sr = librosa.load(path=path, sr=None, mono=False)
y = y[::3]
# 默认提取 20 帧
audio_mac = librosa.feature.mfcc(y=y,n_mfcc=25, sr=16000)
y_shape = audio_mac.shape[1]
if y_shape < max_pad_size:
pad_size = max_pad_size - y_shape
audio_mac = np.pad(audio_mac, ((0, 0), (0, pad_size)), mode='constant')
else:
audio_mac = audio_mac[:, :max_pad_size]
return audio_mac


def predict_audio(file):
print (file)
wav_feature = wav2mfcc(file)
wav_feature = wav_feature.reshape(-1, 25*11)
print (wav_feature.shape)
model = load_model("audio.h5")
result_list = model.predict(wav_feature)
print (result_list)
max_result = result_list.argmax()
print (max_result)
print ("预测结果为:",Dict_data[max_result])
playsound(WAV_DICT[max_result])




def main():
#predict_audio(file="wav/2/3_.wav")
predict_audio(file="../datasets/2/003.wav")
#predict_audio(file="2_2.wav")


main()

6. 根据预测结果进行应答

WAV_DICT = {
0:"../info/eat.wav",
1:"../info/waiting.wav",
2:"../info/stop.wav"
}

说明:当预测为0的时候需要播放对应的文件,其他的同理;需要提前找好音频文件。

完整训练代码

import numpy as np
import librosa
from glob import glob
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import Sequential,load_model
from keras.utils.np_utils import to_categorical
import pandas as pd
import matplotlib.pyplot as plt



def wav2mfcc(path, max_pad_size=11):
y, sr = librosa.load(path=path, sr=None, mono=False)
y = y[::3]
# 默认提取 20 帧
audio_mac = librosa.feature.mfcc(y=y,n_mfcc=25, sr=16000)
y_shape = audio_mac.shape[1]
if y_shape < max_pad_size:
pad_size = max_pad_size - y_shape
audio_mac = np.pad(audio_mac, ((0, 0), (0, pad_size)), mode='constant')
else:
audio_mac = audio_mac[:, :max_pad_size]
return audio_mac
def tf_datasets(path):
wav_file = glob(path+"/*/*.wav")
#print (wav_file)
wav_file_len = len(wav_file)
x_train = np.zeros((wav_file_len,25,11))
y_train = np.zeros((wav_file_len))

for index,file in enumerate(wav_file):
file_feature = wav2mfcc(file)
file_label = file.split("\\")[-2]
x_train[index] = file_feature
y_train[index] = file_label
print (file_feature.shape,file_label)
return x_train,y_train

def save_plot(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,3)
plt.gca().set_xlim(0,5)
plt.show()

def main():
#f,l = get_audio_feature("datasets/0/003.wav")
#print (f.shape,l)

#t = wav2mfcc("datasets/0/004.wav")
#print (t.shape)

x_train,y_train = tf_datasets(path="../datasets")
x_train = x_train.reshape(-1, 25*11)
y_train_hot = to_categorical(y_train)

print (x_train.shape,y_train.shape)


model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(25*11,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(3, activation='softmax'))
"""
model= Sequential()
model.add(Dense(128,activation='relu',input_shape=(25*11,)))
model.add(Dropout(0.1))

model.add(Dense(64,activation='relu'))
model.add(Dropout(0.1))

model.add(Dense(64,activation='relu'))
model.add(Dropout(0.1))

model.add(Dense(3, activation='softmax'))
"""
model.summary()

model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.RMSprop(),
metrics=['accuracy'])
history = model.fit(x_train, y_train, batch_size=12, epochs=2000)
model.save("audio.h5")
#save_plot(history)



main()

结尾

问题:真正的实际需要是根据一个人说的简单词汇,做出相应的回答,并使机器人执行对应命令,目前已完成。

难点一:我们需要对真实声音进行降噪处理,场景噪声过大,无法识别,同时模型也无法提取有效特征。

难点二: 我们需要自定义一个监听器,当有人说话时能够执行相应命令;我的思路是当有人说话时,自动录音,然后使用模型进行预测,预测成功后播放对应音频,并进行指令操作。


标签:file,卷积,shape,神经网络,pad,语音,wav,model,audio
From: https://blog.51cto.com/u_15872074/5841647

相关文章