首页 > 其他分享 >POJ 2478 Farey Sequence

POJ 2478 Farey Sequence

时间:2022-11-09 19:41:22浏览次数:45  
标签:phi const Sequence int sum Farey POJ include define


Description



The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5} 

You task is to calculate the number of terms in the Farey sequence Fn.


Input



There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10  6). There are no blank lines between cases. A line with a single 0 terminates the input.


Output



For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 


Sample Input



2 3 4 5 0


Sample Output



1 3 5

9


线性筛求欧拉函数。

#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define loop(i,j,k) for (int i = j;i != -1; i = k[i])
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
#define ff first
#define ss second
#define mp(i,j) make_pair(i,j)
#define pb push_back
#define pii pair<int,LL>
#define in(x) scanf("%d", &x);
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const double eps = 1e-4;
const int INF = 0x7FFFFFFF;
const int mod = 998244353;
const int N = 1e6 + 10;
int n;
LL sum[N];
int phi[N], f[N], p[N], t;

void init()
{
t = 0; sum[1] = phi[1] = f[1] = 1;
rep(i, 2, N - 1)
{
if (!f[i]) p[t++] = i, phi[i] = i - 1;
for (int j = 0,k; j < t&&p[j] * i < N; j++)
{
k = p[j] * i; f[k] = 1;
phi[k] = phi[i] * (p[j] - 1);
if (i % p[j] == 0) { phi[k] = phi[i] * p[j]; break; }
}
sum[i] = sum[i - 1] + phi[i];
}
}

int main()
{
init();
while (scanf("%d", &n), n) printf("%lld\n", sum[n] - 1);
return 0;
}



标签:phi,const,Sequence,int,sum,Farey,POJ,include,define
From: https://blog.51cto.com/u_15870896/5838596

相关文章

  • POJ 3090 Visible Lattice Points
    DescriptionAlatticepoint(x, y)inthefirstquadrant(x and y areintegersgreaterthanorequalto0),otherthantheorigin,isvisiblefromtheor......
  • POJ 1284 Primitive Roots
    DescriptionWesaythatintegerx,0<x<p,isaprimitiverootmodulooddprimepifandonlyiftheset{(x i modp)|1<=i<=p-1}isequal......
  • POJ 2407 Relatives
    DescriptionGivenn,apositiveinteger,howmanypositiveintegerslessthannarerelativelyprimeton?Twointegersaandbarerelativelyprimeifth......
  • POJ 3970 Party
    DescriptionTheCEOofACM(AssociationofCryptographicMavericks)organizationhasinvitedallofhisteamstotheannualall-handsmeeting,beingaver......
  • SPOJ LCS Longest Common Substring
    DescriptionAstringisfinitesequenceofcharactersoveranon-emptyfinitesetΣ.Inthisproblem,Σisthesetoflowercaseletters.Substring,alsocalled......
  • SPOJ LCS2 Longest Common Substring II
    DescriptionAstringisfinitesequenceofcharactersoveranon-emptyfinitesetΣ.Inthisproblem,Σisthesetoflowercaseletters.Substring,alsocalled......
  • ACdream 1427 Nice Sequence
    Description    Letusconsiderthesequencea1, a2,..., an ofnon-negativeintegernumbers.Denoteasci,j thenumber ofoccurrencesofthenumber......
  • POJ 3458 Colour Sequence
    DescriptionWehaveapileofcardsconsistingof100cardsthatarecolouredonbothsides.Thereisafinitenumberofcolours(atmost26).Inadditionthe......
  • SPOJ 705 New Distinct Substrings
    DescriptionGivenastring,weneedtofindthetotalnumberofitsdistinctsubstrings.InputT-numberoftestcases.T<=20;Eachtestcaseconsistsofonestr......
  • POJ 1743 Musical Theme
    DescriptionAmusicalmelodyisrepresentedasasequenceofN(1<=N<=20000)notesthatareintegersintherange1..88,eachrepresentingakeyonthepi......