Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7 12 0
Sample Output
6
4
根号效率求欧拉函数
#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define loop(i,j,k) for (int i = j;i != -1; i = k[i])
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
#define ff first
#define ss second
#define mp(i,j) make_pair(i,j)
#define pb push_back
#define pii pair<int,LL>
#define in(x) scanf("%d", &x);
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const double eps = 1e-4;
const int INF = 0x7FFFFFFF;
const int mod = 998244353;
const int N = 20;
int n;
int main()
{
while (scanf("%d", &n), n)
{
int ans = 1;
for (int i = 2; i*i <= n; i++)
{
if (n % i) continue;
n /= i; ans *= i - 1;
while (!(n % i)) ans *= i, n /= i;
}
printf("%d\n", n > 1 ? ans * (n - 1) : ans);
}
return 0;
}