基于 Levenberg - Marquardt 法的 BP 网络学习改进算法详解
一、引言
BP(Back Propagation)神经网络在众多领域有着广泛应用,但传统 BP 算法存在收敛速度慢、易陷入局部最优等问题。Levenberg - Marquardt(LM)算法作为一种有效的优化算法,被应用于改进 BP 网络学习,能够显著提高训练效率和网络性能。本文将深入阐述基于 Levenberg - Marquardt 法的 BP 网络学习改进算法,包括其原理、实现步骤和详细的代码示例。
二、传统 BP 网络学习算法回顾
(一)网络结构与前向传播
BP 神经网络一般由输入层、隐藏层和输出层构成。设输入层有 n n n 个神经元,输入向量为 x = ( x 1 , x 2 , ⋯ , x n ) \mathbf{x}=(x_1,x_2,\cdots,x_n) x=(x1,x2,⋯,xn);隐藏层有 m m m 个神经元,输出向量为 h = ( h 1 , h 2 , ⋯ , h m ) \mathbf{h}=(h_1,h_2,\cdots,h_m) h=(h1,h2,⋯,hm);输出层有 p p p 个神经元,输出向量为 y = ( y 1 , y 2 , ⋯ , y p ) \mathbf{y}=(y_1,y_2,\cdots,y_p) y=(y1,y2,⋯,yp)。
在前向传播过程中,对于输入层到隐藏层,隐藏层神经元的输入为:
n e t j = ∑ i = 1 n w i j 1 x i + b j 1 net_{j}=\sum_{i = 1}^{n}w_{ij}^{1}x_{i}+b_{j}^{1} netj=∑i=1nwij1xi+bj1
其中, w i j 1 w_{ij}^{1} wij1 是输入层到隐藏层的连接权重, b j 1 b_{j}^{1} bj1 是隐藏层的偏置。隐藏层神经元的输出通常经过激活函数(如 Sigmoid 函数 h j = 1 1 + e − n e t j h_{j}=\frac{1}{1 + e^{-net_{j}}} hj=1+e−netj1)处理。
从隐藏层到输出层,输出层神经元的输入为:
u k = ∑ j = 1 m w j k 2 h j + b k 2 u_{k}=\sum_{j = 1}^{m}w_{jk}^{2}h_{j}+b_{k}^{2} uk=∑j=1mwjk2hj+bk2
输出层神经元的输出 y k = 1 1 + e − u k y_{k}=\frac{1}{1 + e^{-u_{k}}} yk=1+e−uk1(这里以 Sigmoid 函数为例)。
(二)误差计算与反向传播
对于训练样本集 { ( x ( μ ) , t ( μ ) ) } μ = 1 N \{(\mathbf{x}^{(\mu)},\mathbf{t}^{(\mu)})\}_{\mu = 1}^{N} {(x(μ),t(μ))}μ=1N,其中 x ( μ ) \mathbf{x}^{(\mu)} x(μ) 是第 μ \mu μ 个输入样本, t ( μ ) \mathbf{t}^{(\mu)} t(μ) 是对应的目标输出。常用的误差函数是均方误差:
E = 1 2 ∑ μ = 1 N ∑ k = 1 p ( y k ( μ ) − t k ( μ ) ) 2 E=\frac{1}{2}\sum_{\mu = 1}^{N}\sum_{k = 1}^{p}(y_{k}^{(\mu)}-t_{k}^{(\mu)})^{2} E=21∑μ=1N∑k=1p(yk(μ)−tk(μ))2
在反向传播过程中,根据误差函数对权重的梯度来更新权重。以输出层到隐藏层的权重 w j k 2 w_{jk}^{2} wjk2 为例,其梯度计算为:
∂ E ∂ w j k 2 = ∑ μ = 1 N ( y k ( μ ) − t k ( μ ) ) y k ( μ ) ( 1 − y k ( μ ) ) h j ( μ ) \frac{\partial E}{\partial w_{jk}^{2}}=\sum_{\mu = 1}^{N}(y_{k}^{(\mu)}-t_{k}^{(\mu)})y_{k}^{(\mu)}(1 - y_{k}^{(\mu)})h_{j}^{(\mu)} ∂wjk2∂E=∑μ=1N(yk(μ)−tk(μ))yk(μ)(1−yk(μ))hj(μ)
然后根据梯度下降法更新权重:
w j k 2 ( t + 1 ) = w j k 2 ( t ) − η ∂ E ∂ w j k 2 w_{jk}^{2}(t + 1)=w_{jk}^{2}(t)-\eta\frac{\partial E}{\partial w_{jk}^{2}} wjk2(t+1)=wjk2(t)−η∂wjk2∂E
其中, η \eta η 是学习率, t t t 表示训练次数。类似地,可以计算输入层到隐藏层的权重更新公式。
三、传统 BP 算法的问题分析
(一)收敛速度问题
- 学习率的影响
在传统 BP 算法中,学习率的选择至关重要且困难。若学习率过大,权重更新可能会过度,导致网络在误差曲面上跳过最小值点,甚至使训练过程发散;若学习率过小,权重更新缓慢,需要大量的训练迭代才能使误差降低到可接受的水平,尤其在处理复杂的高维数据或复杂函数逼近问题时,收敛速度会非常慢。 - 梯度下降的局限性
传统 BP 基于梯度下降方法,每次权重更新仅沿着当前梯度的负方向进行。在复杂的误差曲面中,如存在狭长的峡谷或平坦区域,梯度方向可能并不直接指向全局最小值,这会导致在这些区域收敛效率低下。
(二)局部最优问题
由于传统 BP 算法沿着梯度下降方向更新权重,容易陷入局部最优解。在误差曲面中,当达到局部最优点时,梯度为零或接近零,此时权重更新停止,但这个局部最优点可能并非全局最优解,使得网络的性能无法进一步提升。
四、Levenberg - Marquardt 法原理
(一)基本思想
Levenberg - Marquardt 法是一种结合了梯度下降法和牛顿法优点的优化算法。它在接近最优解时具有牛顿法的二次收敛速度,在远离最优解时表现得像梯度下降法一样稳定。
对于目标函数 E ( w ) E(\mathbf{w}) E(w)(这里 w \mathbf{w} w 表示网络的所有权重和偏置组成的向量),牛顿法的迭代公式为:
w t + 1 = w t − [ ∇ 2 E ( w t ) ] − 1 ∇ E ( w t ) \mathbf{w}^{t + 1}=\mathbf{w}^{t}-[\nabla^{2}E(\mathbf{w}^{t})]^{-1}\nabla E(\mathbf{w}^{t}) wt+1=wt−[∇2E(wt)]−1∇E(wt)
其中, ∇ E ( w t ) \nabla E(\mathbf{w}^{t}) ∇E(wt) 是目标函数在 w t \mathbf{w}^{t} wt 处的梯度向量, ∇ 2 E ( w t ) \nabla^{2}E(\mathbf{w}^{t}) ∇2E(wt) 是目标函数在 w t \mathbf{w}^{t} wt 处的 Hessian 矩阵。然而,计算 Hessian 矩阵及其逆矩阵在实际中计算量很大。
Levenberg - Marquardt 法使用一个近似的 Hessian 矩阵。它将目标函数 E ( w ) E(\mathbf{w}) E(w) 在当前点 w t \mathbf{w}^{t} wt 处进行二阶泰勒展开:
E ( w ) ≈ E ( w t ) + ∇ E ( w t ) T ( w − w t ) + 1 2 ( w − w t ) T H ( w − w t ) E(\mathbf{w})\approx E(\mathbf{w}^{t})+\nabla E(\mathbf{w}^{t})^{T}(\mathbf{w}-\mathbf{w}^{t})+\frac{1}{2}(\mathbf{w}-\mathbf{w}^{t})^{T}\mathbf{H}(\mathbf{w}-\mathbf{w}^{t}) E(w)≈E(wt)+∇E(wt)T(w−wt)+21(w−wt)TH(w−wt)
其中, H \mathbf{H} H 是对 Hessian 矩阵的近似。在 LM 算法中,这个近似的 Hessian 矩阵为:
H = J T J + λ I \mathbf{H}=\mathbf{J}^{T}\mathbf{J}+\lambda\mathbf{I} H=JTJ+λI
其中, J \mathbf{J} J 是雅可比矩阵,它的元素是误差函数对权重的一阶偏导数, λ \lambda λ 是一个可调参数, I \mathbf{I} I 是单位矩阵。当 λ \lambda λ 很大时,算法接近梯度下降法;当 λ \lambda λ 很小时,算法接近牛顿法。
(二)参数更新公式
权重更新公式为:
w t + 1 = w t − ( J T J + λ I ) − 1 J T e \mathbf{w}^{t + 1}=\mathbf{w}^{t}-(\mathbf{J}^{T}\mathbf{J}+\lambda\mathbf{I})^{-1}\mathbf{J}^{T}\mathbf{e} wt+1=wt−(JTJ+λI)−1JTe
其中, e \mathbf{e} e 是误差向量。通过调整 λ \lambda λ 的值,可以控制算法的收敛速度和稳定性。在每次迭代中,如果误差减小,则减小 λ \lambda λ;如果误差增大,则增大 λ \lambda λ。
五、基于 Levenberg - Marquardt 法的 BP 网络学习改进算法步骤
(一)初始化
- 网络参数初始化
初始化 BP 网络的权重和偏置,可将权重随机初始化为较小的值,例如在区间 [ − 0.5 , 0.5 ] [-0.5,0.5] [−0.5,0.5] 内。同时,初始化参数 λ \lambda λ(通常初始化为一个较小的值,如 0.01)、雅可比矩阵 J \mathbf{J} J(初始化为相应大小的零矩阵)和其他相关变量。 - 训练参数初始化
设置训练的相关参数,如最大训练次数、误差阈值等,用于控制训练过程的终止条件。
(二)训练过程
- 前向传播
对于每个训练样本,按照传统 BP 算法的前向传播方式计算网络的输出。 - 误差计算与雅可比矩阵计算
计算当前样本的误差向量 e \mathbf{e} e,并通过反向传播计算雅可比矩阵 J \mathbf{J} J。雅可比矩阵的计算涉及到误差函数对每个权重的偏导数。 - 近似 Hessian 矩阵构建与权重更新
根据当前的雅可比矩阵 J \mathbf{J} J 和参数 λ \lambda λ,构建近似 Hessian 矩阵 H = J T J + λ I \mathbf{H}=\mathbf{J}^{T}\mathbf{J}+\lambda\mathbf{I} H=JTJ+λI。然后,求解线性方程组 ( J T J + λ I ) Δ w = J T e (\mathbf{J}^{T}\mathbf{J}+\lambda\mathbf{I})\Delta\mathbf{w}=\mathbf{J}^{T}\mathbf{e} (JTJ+λI)Δw=JTe,得到权重更新量 Δ w \Delta\mathbf{w} Δw,并更新网络的权重和偏置: w t + 1 = w t − Δ w \mathbf{w}^{t + 1}=\mathbf{w}^{t}-\Delta\mathbf{w} wt+1=wt−Δw。 - 参数调整
计算更新权重后的误差。如果误差减小,则减小 λ \lambda λ(例如, λ = λ / 10 \lambda=\lambda/10 λ=λ/10);如果误差增大,则增大 λ \lambda λ(例如, λ = 10 λ \lambda = 10\lambda λ=10λ)。 - 停止准则判断
检查是否满足停止准则,如达到最大训练次数或者当前误差小于设定的误差阈值。如果满足,则停止训练;否则,返回步骤 1 继续下一次迭代。
六、代码示例
以下是使用 Python 实现的基于 Levenberg - Marquardt 法的 BP 网络学习改进算法的代码示例:
import numpy as np
# Sigmoid 激活函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Sigmoid 函数的导数
def sigmoid_derivative(x):
return x * (1 - x)
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 随机初始化权重
self.W1 = np.random.rand(self.input_size, self.hidden_size)
self.b1 = np.zeros((1, self.hidden_size))
self.W2 = np.random.rand(self.hidden_size, self.output_size)
self.b2 = np.zeros((1, self.output_size))
self.lambda_value = 0.01 # 初始lambda值
def forward_propagation(self, X):
self.z1 = np.dot(X, self.W1) + self.b1
self.a1 = sigmoid(self.z1)
self.z2 = np.dot(self.a1, self.W2) + self.b2
self.a2 = sigmoid(self.z2)
return self.a2
def back_propagation(self, X, y):
m = X.shape[0]
dZ2 = (self.a2 - y) * sigmoid_derivative(self.z2)
dW2 = np.dot(self.a1.T, dZ2)
db2 = np.sum(dZ2, axis=0, keepdims=True)
dZ1 = np.dot(dZ2, self.W2.T) * sigmoid_derivative(self.z1)
dW1 = np.dot(X.T, dZ1)
db1 = np.sum(dZ1, axis=0, keepdims=True)
return dW1, db1, dW2, db2
def jacobian_matrix(self, X, y):
m = X.shape[0]
J = np.zeros((m * self.output_size, (self.input_size * self.hidden_size) + self.hidden_size + (self.hidden_size * self.output_size) + self.output_size))
for i in range(m):
sample_X = X[i].reshape(1, -1)
sample_y = y[i].reshape(1, -1)
dW1, db1, dW2, db2 = self.back_propagation(sample_X, sample_y)
start_idx_W1 = 0
end_idx_W1 = self.input_size * self.hidden_size
start_idx_b1 = end_idx_W1
end_idx_b1 = end_idx_W1 + self.hidden_size
start_idx_W2 = end_idx_b1
end_idx_W2 = end_idx_b1 + self.hidden_size * self.output_size
start_idx_b2 = end_idx_W2
end_idx_b2 = end_idx_W2 + self.output_size
J[i * self.output_size:(i + 1) * self.output_size, start_idx_W1:end_idx_W1] = dW1.flat
J[i * self.output_size:(i + 1) * self.output_size, start_idx_b1:end_idx_b1] = db1.flat
J[i * self.output_size:(i + 1) * self.output_size, start_idx_W2:end_idx_W2] = dW2.flat
J[i * self.output_size:(i + 1) * self.output_size, start_idx_b2:end_idx_b2] = db2.flat
return J
def levenberg_marquardt_update(self, X, y):
output = self.forward_propagation(X)
error = output - y
J = self.jacobian_matrix(X, y)
H = np.dot(J.T, J) + self.lambda_value * np.eye(J.shape[1])
gradient = np.dot(J.T, error.flat)
update_vector = np.linalg.solve(H, gradient)
self.W1 -= update_vector[:self.input_size * self.hidden_size].reshape(self.input_size, self.hidden_size)
self.b1 -= update_vector[self.input_size * self.hidden_size:self.input_size * self.hidden_size + self.hidden_size].reshape(1, self.hidden_size)
self.W2 -= update_vector[self.input_size * self.hidden_size + self.hidden_size:self.input_size * self.hidden_size + self.hidden_size + self.hidden_size * self.output_size].reshape(self.hidden_size, self.output_size)
self.b2 -= update_vector[self.input_size * self.hidden_size + self.hidden_size + self.hidden_size * self.output_size:].reshape(1, self.output_size)
new_error = np.mean((self.forward_propagation(X) - y) ** 2)
old_error = np.mean((output - y) ** 2)
if new_error < old_error:
self.lambda_value = self.lambda_value / 10
else:
self.lambda_value = self.lambda_value * 10
def train(self, X, y, epochs):
for epoch in range(epochs):
self.levenberg_marquardt_update(X, y)
if epoch % 100 == 0:
output = self.forward_propagation(X)
error = np.mean((output - y) ** 2)
print(f'Epoch {epoch}: Error = {error}, Lambda = {self.lambda_value}')
以下是一个简单的测试示例:
# 示例用法
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([[0], [1], [1], [0]])
neural_network = NeuralNetwork(2, 3, 1)
neural_network.train(X, y, 1000)
七、总结
基于 Levenberg - Marquardt 法的 BP 网络学习改进算法通过巧妙地近似 Hessian 矩阵,结合了梯度下降法和牛顿法的优点。这种算法在 BP 网络训练中能够更快地收敛,并且在一定程度上减少了陷入局部最优解的可能性。代码示例详细展示了该算法在 Python 中的实现过程,在实际应用中,可以根据具体的问题和数据集进一步优化算法,如更精细地调整 λ \lambda λ 的调整策略、改进雅可比矩阵的计算方法等,以提高网络的训练效果和泛化能力。该算法在函数逼近、数据分类等需要高效训练神经网络的场景中具有重要的应用价值。
标签:mathbf,lambda,self,Marquardt,BP,output,hidden,Levenberg,size From: https://blog.csdn.net/ashyyyy/article/details/143872839