首页 > 编程语言 >实验一:决策树算法实验

实验一:决策树算法实验

时间:2022-10-29 23:11:56浏览次数:47  
标签:datasets self feature 算法 train 实验 ent data 决策树

实验一:决策树算法实验

姓名:许珂

学号:201613344

【实验目的】

  1. 理解决策树算法原理,掌握决策树算法框架;
  2. 理解决策树学习算法的特征选择、树的生成和树的剪枝;
  3. 能根据不同的数据类型,选择不同的决策树算法;
  4. 针对特定应用场景及数据,能应用决策树算法解决实际问题。

【实验内容】

  1. 设计算法实现熵、经验条件熵、信息增益等方法。
  2. 针对给定的房贷数据集(数据集表格见附录1)实现ID3算法。
  3. 熟悉sklearn库中的决策树算法;
  4. 针对iris数据集,应用sklearn的决策树算法进行类别预测。

【实验报告要求】

  1. 对照实验内容,撰写实验过程、算法及测试结果;
  2. 代码规范化:命名规则、注释;
  3. 查阅文献,讨论ID3、5算法的应用场景;
  4. 查询文献,分析决策树剪枝策略。

实验代码

1.设计算法实现熵、经验条件熵、信息增益等办法:

 1 #导入本次实验所需要的包
 2 import numpy as np
 3 import 4 import matplotlib.pyplot as plt
 5 %matplotlib inline
 6 from sklearn.datasets import load_iris
 7 from sklearn.model_selection import train_test_split
 8 from collections import Counter
 9 import math
10 from math import log
11 import pprint
#数据集和分类属性
def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'],] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels
1 datasets, labels = create_data()
2 train_data = pd.DataFrame(datasets, columns=labels)
3 train_data

 运行结果:

计算数据集的熵

 1 def calc_ent(datasets):
 2     data_length = len(datasets)
 3     label_count = {}
 4     for i in range(data_length):
 5         label = datasets[i][-1]
 6         if label not in label_count:
 7             label_count[label] = 0
 8         label_count[label] += 1
 9     ent = -sum([(p / data_length) * log(p / data_length, 2)
10                 for p in label_count.values()])
11     return ent
12 
13 
14 ent = calc_ent(datasets)
15 ent
16 #def entropy(y):
17 #Entropy of a label sequence
18 #"""
19 #hist = np.bincount(y)
20 #ps = hist / np.sum(hist)
21 #return -np.sum([p * np.log2(p) for p in ps if p > 0])

运行结果:

计算经验条件熵

 1 def cond_ent(datasets, axis=0):
 2     data_length = len(datasets)
 3     feature_sets = {}
 4     for i in range(data_length):
 5         feature = datasets[i][axis]
 6         if feature not in feature_sets:
 7             feature_sets[feature] = []
 8         feature_sets[feature].append(datasets[i])
 9     cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
10     return cond_ent
11 
12 cond_ent = cond_ent(datasets)
13 cond_ent

运行结果:

 

计算数据集的信息增益:

 1 def info_gain(ent, cond_ent):
 2     return ent - cond_ent
 3 def info_gain_train(datasets):
 4     count = len(datasets[0]) - 1
 5     ent = calc_ent(datasets)
 6 
 7 #ent = entropy(datasets)
 8     best_feature = []
 9     for c in range(count):
10         c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
11         best_feature.append((c, c_info_gain))
12         print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
13 # 比较大小
14     best_ = max(best_feature, key=lambda x: x[-1])
15     return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])

 

info_gain_train(np.array(datasets))

 

 

运行结果:

2.针对给定的房贷数据集实现ID3算法:

  1 #使用ID3算法生成决策树
  2 class Node:
  3     def __init__(self, root=True, label=None, feature_name=None, feature=None):
  4         self.root = root
  5         self.label = label
  6         self.feature_name = feature_name
  7         self.feature = feature
  8         self.tree = {}
  9         self.result = {
 10             'label:': self.label,
 11             'feature': self.feature,
 12             'tree': self.tree}
 13     def __repr__(self):
 14         return '{}'.format(self.result)
 15     def add_node(self, val, node):
 16         self.tree[val] = node
 17     def predict(self, features):
 18         if self.root is True:
 19             return self.label
 20         return self.tree[features[self.feature]].predict(features)
 21 
 22 class DTree:
 23     def __init__(self, epsilon=0.1):
 24         self.epsilon = epsilon
 25         self._tree = {}
 26 # 熵
 27     @staticmethod
 28     def calc_ent(datasets):
 29         data_length = len(datasets)
 30         label_count = {}
 31         for i in range(data_length):
 32             label = datasets[i][-1]
 33             if label not in label_count:
 34                 label_count[label] = 0
 35             label_count[label] += 1
 36         ent = -sum([(p / data_length) * log(p / data_length, 2)
 37                     for p in label_count.values()])
 38         return ent
 39 # 经验条件熵
 40     def cond_ent(self, datasets, axis=0):
 41         data_length = len(datasets)
 42         feature_sets = {}
 43         for i in range(data_length):
 44             feature = datasets[i][axis]
 45             if feature not in feature_sets:
 46                 feature_sets[feature] = []
 47             feature_sets[feature].append(datasets[i])
 48         cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
 49                         for p in feature_sets.values()])
 50         return cond_ent
 51 # 信息增益
 52     @staticmethod
 53     def info_gain(ent, cond_ent):
 54         return ent - cond_ent
 55     def info_gain_train(self, datasets):
 56         count = len(datasets[0]) - 1
 57         ent = self.calc_ent(datasets)
 58         best_feature = []
 59         for c in range(count):
 60             c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
 61             best_feature.append((c, c_info_gain))
 62 # 比较大小
 63             best_ = max(best_feature, key=lambda x: x[-1])
 64             return best_
 65     def train(self, train_data):
 66         """
 67         input:数据集D(DataFrame格式),特征集A,阈值eta
 68         output:决策树T
 69         """
 70         _, y_train, features = train_data.iloc[:, :
 71                                             -1], train_data.iloc[:,-1], train_data.columns[:-1]
 72 # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
 73         if len(y_train.value_counts()) == 1:
 74             return Node(root=True, label=y_train.iloc[0])
 75 # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
 76         if len(features) == 0:
 77             return Node(
 78                 root=True,
 79                 label=y_train.value_counts().sort_values(
 80                 ascending=False).index[0])
 81 # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
 82         max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
 83         max_feature_name = features[max_feature]
 84 # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
 85         if max_info_gain < self.epsilon:
 86             return Node(
 87                 root=True,
 88                 label=y_train.value_counts().sort_values(ascending=False).index[0])
 89 # 5,构建Ag子集
 90         node_tree = Node(
 91             root=False, feature_name=max_feature_name, feature=max_feature)
 92         feature_list = train_data[max_feature_name].value_counts().index
 93         for f in feature_list:
 94             sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)
 95 # 6, 递归生成树
 96             sub_tree = self.train(sub_train_df)
 97             node_tree.add_node(f, sub_tree)
 98 # pprint.pprint(node_tree.tree)
 99         return node_tree
100     def fit(self, train_data):
101         self._tree = self.train(train_data)
102         return self._tree
103     def predict(self, X_test):
104         return self._tree.predict(X_test)

 

1 #创建决策树
2 datasets, labels = create_data()
3 data_df = pd.DataFrame(datasets, columns=labels)
4 dt = DTree()
5 tree = dt.fit(data_df)
6 tree

运行结果:

1 dt.predict(['老年', '否', '否', '一般'])

运行结果:

3.针对iris数据集,应用sklearn的决策树算法进行类别预测:

 1 import numpy as np
 2 import random
 3 from sklearn import tree
 4 from graphviz import Source
 5 import pandas as pd
 6 import re
 7 
 8 def origalData():
 9     dataSet =[['青年', '否', '否', '一般', '否'],
10                 ['青年', '否', '否', '好', '否'],
11                 ['青年', '是', '否', '好', '是'],
12                 ['青年', '是', '是', '一般', '是'],
13                 ['青年', '否', '否', '一般', '否'],
14                 ['中年', '否', '否', '一般', '否'],
15                 ['中年', '否', '否', '好', '否'],
16                 ['中年', '是', '是', '好', '是'],
17                 ['中年', '否', '是', '非常好', '是'],
18                 ['中年', '否', '是', '非常好', '是'],
19                 ['老年', '否', '是', '非常好', '是'],
20                 ['老年', '否', '是', '好', '是'],
21                 ['老年', '是', '否', '好', '是'],
22                 ['老年', '是', '否', '非常好', '是'],
23                 ['老年', '否', '否', '一般', '否'],]
24     labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']  # 分类属性
25     return dataSet, labels  # 返回数据集和分类属性
26 
27 
28 if __name__ == '__main__':
29     dataset,labels = origalData()
30     datasetFrame = pd.DataFrame(dataset)
31     print("datasetFrame:{}".format(datasetFrame))
32     X_train = datasetFrame.iloc[:,:-1]
33     Y_train = datasetFrame.iloc[:,4:]
34     a = np.column_stack((Y_train,X_train))
35     clf = tree.DecisionTreeClassifier(criterion='gini',max_depth=4)
36     clf =clf.fit(X_train,Y_train)
37     graph = Source(tree.export_graphviz(clf,out_file=None))
38     graph.format='png'
39     graph.render('dtYesNo',view=True)
40     print('X_train:{}\nY_train:{}'.format(X_train,Y_train))
41     # print("dataset:{}\nlabels:{}".format(dataset,labels))

 

 

运行结果:

 

 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 from graphviz import Source
 5 from sklearn.datasets import  load_iris
 6 from sklearn.metrics import accuracy_score
 7 from sklearn.model_selection import train_test_split
 8 from _collections import _count_elements
 9 import math
10 from sklearn import tree
11 from math import log
12 import pprint
13 from sklearn.tree import DecisionTreeClassifier
14 from sklearn.tree import export_graphviz
15 import graphviz
16 
17 def create_data():
18     iris = load_iris()
19     df = pd.DataFrame(iris.data,columns=iris.feature_names)
20     df['label']=iris.target
21     df.columns = ['speal length','speal width','petal length','petal width','label']
22     data = np.array(df.iloc[:100,[0,1,-1]])
23     print('data:')
24     print(data)
25 
26     return data[:,:2],data[:,-1]
27 if __name__ == '__main__':
28     iris = load_iris()
29     X,y = create_data()
30     X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
31     #print(X_train,X_test,y_train,y_test)
32     clf = DecisionTreeClassifier(max_depth=4)
33     print(clf.fit(X_train,y_train,))
34     print(clf.score(X_test,y_test))
35     predict_results = clf.predict(X_test)  # 使用模型对测试集进行预测
36     print(predict_results)
37     print(accuracy_score(predict_results, y_test))
38     graph = Source(tree.export_graphviz(clf, out_file=None))
39     graph.format = 'png'
40     graph.render('dt', view=True)

 

 

运行结果:

 

 

 

实验小结:

讨论ID3算法的应用场景
ID3算法应用场景:

  通过本次实验,我对决策树算法实验和ID3算法有了更近一步的掌握,它的基础理论清晰,算法比较简单,学习能力较强,适合处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础,ID3算法特别在机器学、知识发现和数据挖掘等领域得到了极大地发展。

分析决策树剪枝策略:

  • 如何进行决策树剪枝
    先对数据集划分成训练集和验证集,训练集用来决定书生成过程中每个节点划分选择的属性,验证集在预剪枝中用于决定该节点是否有必要一句改属性进行展开,在后剪枝中用于判断该节点是否需要进行剪枝。先剪枝(pruning)的目的是为了避免决策树模型的过拟合。因为决策树算法在学习的过程中为了尽可能的正确的分类训练样本,不停地对结点进行划分,因此这会导致整棵树的分支过多,也就导致了过拟合。决策树的剪枝策略最基本的有两种:预剪枝(pre-pruning)和后剪枝(post-pruning):
  • 预剪枝(pre-pruning):预剪枝就是在构造决策树的过程中,先对每个结点在划分前进行估计,若果当前结点的划分不能带来决策树模型泛华性能的提升,则不对当前结点进行划分并且将当前结点标记为叶结点
    预剪枝

通过提前停止树的构建而对树剪枝,一旦停止,节点就是树叶,该树叶持有子集元祖最频繁的类。

 

标签:datasets,self,feature,算法,train,实验,ent,data,决策树
From: https://www.cnblogs.com/Xu820228/p/16840171.html

相关文章

  • 实验二:逻辑回归算法实验
    【实验目的】1.理解逻辑回归算法原理,掌握逻辑回归算法框架;2.理解逻辑回归的sigmoid函数;3.理解逻辑回归的损失函数;4.针对特定应用场景及数据,能应用逻辑回归算法解决实际分......
  • 实验7:基于REST API的SDN北向应用实践
    一、实验目的能够编写程序调用OpenDaylightRESTAPI实现特定网络功能;能够编写程序调用RyuRESTAPI实现特定网络功能。二、实验环境下载虚拟机软件OracleVisualBo......
  • 实验二 面向对象程序设计
    一、实验目的1.掌握类的声明、对象的创建。2.掌握方法的定义和调用、方法的重载。3.掌握构造函数的使用。4.掌握类的继承、掌握隐藏与重写(覆盖)。5.掌握抽象类与接口。二、实......
  • 实验一 Java基础与结构化编程
     一、实验目的1.熟悉JDK开发环境。2.掌握JavaApplication的程序结构和开发过程。3.掌握Java语言基础。4.掌握分支语句。5.掌握循环语句。二、实验内容问题描述 掌握JavaApplic......
  • 实验3:OpenFlow协议分析实践
    1.搭建下图所示拓扑,完成相关IP配置,并实现主机与主机之间的IP通信。用抓包软件获取控制器与交换机之间的通信数据。搭建拓扑所使用Python代码#!/usr/bin/envpython......
  • 实验6:开源控制器实践——RYU
    (一)基本要求1.搭建下图所示SDN拓扑,协议使用OpenFlow1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑。2.阅读Ryu文档的TheFirstApplication一节,运行当中的L2Switch......
  • 实验5:开源控制器实践——POX
    (一)基础要求搭建下图所示SDN拓扑,协议使用OpenFlow1.0,控制器使用部署于本地的POX(默认监听6633端口)阅读Hub模块代码,使用tcpdump验证Hub模块;h1pingh2时,h2和h3都能接......
  • 实验7:基于REST API的SDN北向应用实践
    (一)基本要求1.编写Python程序,调用OpenDaylight的北向接口实现以下功能(1)利用Mininet平台搭建下图所示网络拓扑,并连接OpenDaylight;(2)下发指令删除s1上的流表数据。1-2......
  • 基于MATLAB的LTEA载波聚合算法仿真
    目录一、理论基础二、案例背景1.问题描述2.思路流程三、部分MATLAB仿真四、仿真结论分析五、参考文献一、理论基础在非连续载波聚合(高频+低频)场景下,载波衰减......
  • 实验2:Open vSwitch虚拟交换机实践
    实验2:OpenvSwitch虚拟交换机实践基础要求1.ovs-vsctl基础操作实践:创建OVS交换机,以ovs-xxxxxxxxx命名,其中xxxxxxxxx为本人学号。在创建的交换机上增加端口p0和p1,设置p0的......