首页 > 编程语言 >实验一:决策树算法实验

实验一:决策树算法实验

时间:2022-10-29 18:36:44浏览次数:67  
标签:self tree feature 算法 train 实验 data 决策树

实验一:决策树算法实现


班级:20大数据(3)班
学号:201613341
作业路径:https://www.cnblogs.com/dk9676wl/p/16838779.html


目录:

  • [一、实验目的 ]
  • [二、实验内容 ]
  • [三、实验报告要求 ]
  • [四、实验过程]
  • [五、实验总结]

一、实验目的

1.理解决策树算法原理,掌握决策树算法框架;
2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
3.能根据不同的数据类型,选择不同的决策树算法;
4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

二、实验内容

1.设计算法实现熵、经验条件熵、信息增益等方法;
2.针对给定的房贷数据集(数据集表格见附录1)实现ID3算法;
3.熟悉sklearn库中的决策树算法;
4.针对iris数据集,应用sklearn的决策树算法进行类别预测。

三、实验报告要求

1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.查阅文献,讨论ID3、5算法的应用场景;查询文献,分析决策树剪枝策略。

附录:

四、实验过程

1.设计算法实现熵、经验条件熵、信息增益等方法。

image
①导入包

点击查看代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
from math import log

import pprint

②导入数据

点击查看代码
def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
	# 返回数据集和每个维度的名称
    return datasets, labels
	# 返回数据集和分类属性

③显示数据

点击查看代码

datasets, labels = create_data()
//
train_data = pd.DataFrame(datasets, columns=labels)
//
rain_data


输出结果:

image

X, y = data[:,:-1], data[:,-1] # 数据类型转换,便于后续计算
④熵

点击查看代码
# 熵
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
    return ent

⑤经验条件熵

点击查看代码
# 经验条件熵
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p)/data_length)*calc_ent(p) for p in feature_sets.values()])
    return cond_ent

⑥信息增益

点击查看代码
# 信息增益
def info_gain(ent, cond_ent):
    return ent - cond_ent

def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    # 比较大小
    best_ = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])

info_gain_train(np.array(datasets))
输出预测结果:
image

2.利用ID3算法生成决策树

点击查看代码
# 定义节点类 二叉树
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {'label:': self.label, 'feature': self.feature, 'tree': self.tree}

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)
    
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

    # 熵
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p/data_length)*log(p/data_length, 2) for p in label_count.values()])
        return ent

    # 经验条件熵
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p)/data_length)*self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    # 信息增益
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return best_

    def train(self, train_data):
        """
        input:数据集D(DataFrame格式),特征集A,阈值eta
        output:决策树T
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]
        # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
        if len(y_train.value_counts()) == 1:
            return Node(root=True,
                        label=y_train.iloc[0])

        # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
        if len(features) == 0:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
        if max_info_gain < self.epsilon:
            return Node(root=True, label=y_train.value_counts().sort_values(ascending=False).index[0])

        # 5,构建Ag子集
        node_tree = Node(root=False, feature_name=max_feature_name, feature=max_feature)

        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)

            # 6, 递归生成树
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)

        # pprint.pprint(node_tree.tree)
        return node_tree

    def fit(self, train_data):
        self._tree = self.train(train_data)
        return self._tree

    def predict(self, X_test):
        return self._tree.predict(X_test)


datasets, labels = create_data() data_df = pd.DataFrame(datasets, columns=labels) dt = DTree() tree = dt.fit(data_df)
tree
输出结果:

image


dt.predict(['老年', '否', '否', '一般'])
输出结果:
'否'

点击查看代码
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:,:2], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
//
from sklearn.tree import DecisionTreeClassifier

from sklearn.tree import export_graphviz
import graphviz
//
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)

输出结果:

image

⑤针对iris数据集,应用sklearn的决策树算法进行类别预测
clf.score(X_test, y_test)
输出结果:

image

⑥鸢尾花决策树的结构
tree_pic = export_graphviz(clf, out_file="mytree.pdf") with open('mytree.pdf') as f: dot_graph = f.read()
graphviz.Source(dot_graph)

image

⑦使用sklearn中决策树算法

点击查看代码
from sklearn.tree import DecisionTreeClassifier
from sklearn import preprocessing
import numpy as np
import pandas as pd
from sklearn import tree
import graphviz
features = ["年龄", "有工作", "有自己的房子", "信贷情况"]
X_train = pd.DataFrame([
    ["青年", "否", "否", "一般"],
    ["青年", "否", "否", "好"],
    ["青年", "是", "否", "好"],
    ["青年", "是", "是", "一般"],
    ["青年", "否", "否", "一般"],
    ["中年", "否", "否", "一般"],
    ["中年", "否", "否", "好"],
    ["中年", "是", "是", "好"],
    ["中年", "否", "是", "非常好"],
    ["中年", "否", "是", "非常好"],
    ["老年", "否", "是", "非常好"],
    ["老年", "否", "是", "好"],
    ["老年", "是", "否", "好"],
    ["老年", "是", "否", "非常好"],
    ["老年", "否", "否", "一般"]
])
y_train = pd.DataFrame(["否", "否", "是", "是", "否",
                        "否", "否", "是", "是", "是",
                        "是", "是", "是", "是", "否"])
# 数据预处理
le_x = preprocessing.LabelEncoder()
le_x.fit(np.unique(X_train))
X_train = X_train.apply(le_x.transform)
le_y = preprocessing.LabelEncoder()
le_y.fit(np.unique(y_train))
y_train = y_train.apply(le_y.transform)
# 调用sklearn.DT建立训练模型
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train, y_train)
# 可视化
dot_data = tree.export_graphviz(model_tree, out_file=None,
                                    feature_names=features,
                                    class_names=[str(k) for k in np.unique(y_train)],
                                    filled=True, rounded=True,
                                    special_characters=True)
graph = graphviz.Source(dot_data)
graph

输出结果:

image

点击查看代码
import numpy as np
class LeastSqRTree:
    def __init__(self, train_X, y, epsilon):
        # 训练集特征值
        self.x = train_X
        # 类别
        self.y = y
        # 特征总数
        self.feature_count = train_X.shape[1]
        # 损失阈值
        self.epsilon = epsilon
        # 回归树
        self.tree = None
    def _fit(self, x, y, feature_count, epsilon):
        # 选择最优切分点变量j与切分点s
        (j, s, minval, c1, c2) = self._divide(x, y, feature_count)
        # 初始化树
        tree = {"feature": j, "value": x[s, j], "left": None, "right": None}
        if minval < self.epsilon or len(y[np.where(x[:, j] <= x[s, j])]) <= 1:
            tree["left"] = c1
        else:
            tree["left"] = self._fit(x[np.where(x[:, j] <= x[s, j])],
                                     y[np.where(x[:, j] <= x[s, j])],
                                     self.feature_count, self.epsilon)
        if minval < self.epsilon or len(y[np.where(x[:, j] > s)]) <= 1:
            tree["right"] = c2
        else:
            tree["right"] = self._fit(x[np.where(x[:, j] > x[s, j])],
                                      y[np.where(x[:, j] > x[s, j])],
                                      self.feature_count, self.epsilon)
        return tree
    def fit(self):
        self.tree = self._fit(self.x, self.y, self.feature_count, self.epsilon)
    @staticmethod
    def _divide(x, y, feature_count):
        # 初始化损失误差
        cost = np.zeros((feature_count, len(x)))
        # 公式5.21
        for i in range(feature_count):
            for k in range(len(x)):
                # k行i列的特征值
                value = x[k, i]
                y1 = y[np.where(x[:, i] <= value)]
                c1 = np.mean(y1)
                y2 = y[np.where(x[:, i] > value)]
                c2 = np.mean(y2)
                y1[:] = y1[:] - c1
                y2[:] = y2[:] - c2
                cost[i, k] = np.sum(y1 * y1) + np.sum(y2 * y2)
        # 选取最优损失误差点
        cost_index = np.where(cost == np.min(cost))
        # 选取第几个特征值
        j = cost_index[0][0]
        # 选取特征值的切分点
        s = cost_index[1][0]
        # 求两个区域的均值c1,c2
        c1 = np.mean(y[np.where(x[:, j] <= x[s, j])])
        c2 = np.mean(y[np.where(x[:, j] > x[s, j])])
        return j, s, cost[cost_index], c1, c2

点击查看代码
train_X = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).T
y = np.array([4.50, 4.75, 4.91, 5.34, 5.80, 7.05, 7.90, 8.23, 8.70, 9.00])
model_tree = LeastSqRTree(train_X, y, .2)
model_tree.fit()
model_tree.tree

输出结果:

image

五、实验总结

1、讨论ID3、C4.5算法的应用场景
ID3算法应用场景:
它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。
C4.5算法应用场景:
C4.5算法具有条理清晰,能处理连续型属性,防止过拟合,准确率较高和适用范围广等优点,是一个很有实用价值的决策树算法,可以用来分类,也可以用来回归。C4.5算法在机器学习、知识发现、金融分析、遥感影像分类、生产制造、分子生物学和数据挖掘等领域得到广泛应用。
2、分析决策树剪枝策略
剪枝的目的在于:缓解决策树的"过拟合",降低模型复杂度,提高模型整体的学习效率
(决策树生成学习局部的模型,而决策树剪枝学习整体的模型)
基本策略:
预剪枝:是指在决策树生成过程中,对每一个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶子结点。
优点:降低了过拟合地风险,并显著减少了决策树地训练时间开销和测试时间开销。
缺点:有些分支地当前划分虽不能提升泛化性能、甚至可能导致泛化性能下降,但是在其基础上进行地后续划分却可能导致性能显著提高;
预剪枝基于'贪心'本质禁止这些分支展开,给预剪枝决策树带来了欠拟合的风险。
后剪枝:先从训练集生成一棵完整的决策树,然后自底向上地对非叶子结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
优点:一般情况下后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
缺点:自底向上的注意考察,时间开销较高。
实验小结:
本次实验学习了决策树决策树算法原理,并且实现了简单的掌握决策树算法,以及决策树学习算法的特征选择、树的生成和树的剪枝。决策树只需要一次构建,反复使用,效率较高,每一次预测的最大计算次数不超过决策树的深度,可以处理不相关特征数据,能够处理多输出的问题,并且对缺失值不敏感;但是对连续性的字段比较难预测,容易出现过拟合,当类别太多时,错误可能就会增加的比较快,而且对于各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。

标签:self,tree,feature,算法,train,实验,data,决策树
From: https://www.cnblogs.com/dk9676wl/p/16838779.html

相关文章