博客班级 | https://edu.cnblogs.com/campus/czu/classof2020BigDataClass3-MachineLearning |
---|---|
作业要求 | https://edu.cnblogs.com/campus/czu/classof2020BigDataClass3-MachineLearning/homework/12858 |
学号 | 181613146 |
【实验目的】
- 理解决策树算法原理,掌握决策树算法框架;
- 理解决策树学习算法的特征选择、树的生成和树的剪枝;
- 能根据不同的数据类型,选择不同的决策树算法;
- 针对特定应用场景及数据,能应用决策树算法解决实际问题。
【实验内容】
- 设计算法实现熵、经验条件熵、信息增益等方法。
- 针对给定的房贷数据集(数据集表格见附录1)实现ID3算法。
- 熟悉sklearn库中的决策树算法。
- 针对iris数据集,应用sklearn的决策树算法进行类别预测。
【实验报告要求】
- 对照实验内容,撰写实验过程、算法及测试结果;
- 代码规范化:命名规则、注释;
- 查阅文献,讨论ID3、C4.5算法的应用场景;
- 查询文献,分析决策树剪枝策略。
【附录1】
年龄 | 有工作 | 有自己的房子 | 信贷情况 | 类别 | |
---|---|---|---|---|---|
0 | 青年 | 否 | 否 | 一般 | 否 |
1 | 青年 | 否 | 否 | 好 | 否 |
2 | 青年 | 是 | 否 | 好 | 是 |
3 | 青年 | 是 | 是 | 一般 | 是 |
4 | 青年 | 否 | 否 | 一般 | 否 |
5 | 中年 | 否 | 否 | 一般 | 否 |
6 | 中年 | 否 | 否 | 好 | 否 |
7 | 中年 | 是 | 是 | 好 | 是 |
8 | 中年 | 否 | 是 | 非常好 | 是 |
9 | 中年 | 否 | 是 | 非常好 | 是 |
10 | 老年 | 否 | 是 | 非常好 | 是 |
11 | 老年 | 否 | 是 | 好 | 是 |
12 | 老年 | 是 | 否 | 好 | 是 |
13 | 老年 | 是 | 否 | 非常好 | 是 |
14 | 老年 | 否 | 否 | 一般 | 否 |
【实验过程与步骤】
决策树
-
ID3(基于信息增益)
-
C4.5(基于信息增益比)
-
CART(gini指数)
熵(entropy):$ H(x)=\ -\sum_{i=1}^{n}p_{i}\log p_{i} $
条件熵(conditional entropy): $H(X|Y)=\sum P(X|Y)\log P(X|Y)$
信息增益(information gain) : $g(D,;A)=H(D)-H(D|A)$
信息增益率(information gain ratio): $g_{R}(D,;A)={\frac{g(D,;A)}{H(A)}}$
基尼指数(gini index): $G i n i({\cal D})=\sum_{k}{K}=1;p_{k}\log{p_{k}}=1-\sum_{k=1}{K}p_{k}^{2}$
1. 设计算法实现熵、经验条件熵、信息增益等方法:
# 导入需要的包
import numpy as np
import pandas as pd
import math
from math import log
- 创建数据
# 数据集和分类属性
def create_data():
datasets = [['青年', '否', '否', '一般', '否'], # 数据集
['青年', '否', '否', '好', '否'],
['青年', '是', '否', '好', '是'],
['青年', '是', '是', '一般', '是'],
['青年', '否', '否', '一般', '否'],
['中年', '否', '否', '一般', '否'],
['中年', '否', '否', '好', '否'],
['中年', '是', '是', '好', '是'],
['中年', '否', '是', '非常好', '是'],
['中年', '否', '是', '非常好', '是'],
['老年', '否', '是', '非常好', '是'],
['老年', '否', '是', '好', '是'],
['老年', '是', '否', '好', '是'],
['老年', '是', '否', '非常好', '是'],
['老年', '否', '否', '一般', '否'],]
labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 分类属性
return datasets, labels # 返回数据集和分类属性
# 将数据集转为DataFrame表格
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
train_data
- 熵
def calc_ent(datasets):
data_length = len(datasets)
label_count = {}
for i in range(data_length):
label = datasets[i][-1]
if label not in label_count:
label_count[label] = 0
label_count[label] += 1
ent = -sum([(p / data_length) * log(p / data_length, 2)
for p in label_count.values()])
return ent
- 条件熵
def cond_ent(datasets, axis=0):
data_length = len(datasets)
feature_sets = {}
for i in range(data_length):
feature = datasets[i][axis]
if feature not in feature_sets:
feature_sets[feature] = []
feature_sets[feature].append(datasets[i])
cond_ent = sum([(len(p) / data_length) * calc_ent(p)
for p in feature_sets.values()])
calc_ent(datasets)
- 信息增益
def info_gain(ent, cond_ent):
return ent - cond_ent
def info_gain_train(datasets):
count = len(datasets[0]) - 1
ent = calc_ent(datasets)
best_feature = []
for c in range(count):
c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
best_feature.append((c, c_info_gain))
print('特征({}) 的信息增益为: {:.3f}'.format(labels[c], c_info_gain))
# 比较大小
best_ = max(best_feature, key=lambda x: x[-1])
return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
info_gain_train(np.array(datasets))
2. 针对给定的房贷数据集(数据集表格见附录1)实现ID3算法:
# 定义节点类 二叉树
class Node:
def __init__(self, root=True, label=None, feature_name=None, feature=None):
self.root = root
self.label = label
self.feature_name = feature_name
self.feature = feature
self.tree = {}
self.result = {
'label:': self.label,
'feature': self.feature,
'tree': self.tree
}
def __repr__(self):
return '{}'.format(self.result)
def add_node(self, val, node):
self.tree[val] = node
def predict(self, features):
if self.root is True:
return self.label
return self.tree[features[self.feature]].predict(features)
class DTree:
def __init__(self, epsilon=0.1):
self.epsilon = epsilon
self._tree = {}
# 熵
@staticmethod
def calc_ent(datasets):
data_length = len(datasets)
label_count = {}
for i in range(data_length):
label = datasets[i][-1]
if label not in label_count:
label_count[label] = 0
label_count[label] += 1
ent = -sum([(p / data_length) * log(p / data_length, 2)
for p in label_count.values()])
return ent
# 经验条件熵
def cond_ent(self, datasets, axis=0):
data_length = len(datasets)
feature_sets = {}
for i in range(data_length):
feature = datasets[i][axis]
if feature not in feature_sets:
feature_sets[feature] = []
feature_sets[feature].append(datasets[i])
cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
for p in feature_sets.values()])
return cond_ent
# 信息增益
@staticmethod
def info_gain(ent, cond_ent):
return ent - cond_ent
def info_gain_train(self, datasets):
count = len(datasets[0]) - 1
ent = self.calc_ent(datasets)
best_feature = []
for c in range(count):
c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
best_feature.append((c, c_info_gain))
# 比较大小
best_ = max(best_feature, key=lambda x: x[-1])
return best_
def train(self, train_data):
"""
input:数据集D(DataFrame格式),特征集A,阈值eta
output:决策树T
"""
_, y_train, features = train_data.iloc[:, :
-1], train_data.iloc[:,
-1], train_data.columns[:
-1]
# 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
if len(y_train.value_counts()) == 1:
return Node(root=True, label=y_train.iloc[0])
# 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
if len(features) == 0:
return Node(
root=True,
label=y_train.value_counts().sort_values(
ascending=False).index[0])
# 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
max_feature_name = features[max_feature]
# 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返回T
if max_info_gain < self.epsilon:
return Node(
root=True,
label=y_train.value_counts().sort_values(
ascending=False).index[0])
# 5,构建Ag子集
node_tree = Node(
root=False, feature_name=max_feature_name, feature=max_feature)
feature_list = train_data[max_feature_name].value_counts().index
for f in feature_list:
sub_train_df = train_data.loc[train_data[max_feature_name] ==
f].drop([max_feature_name], axis=1)
# 6, 递归生成树
sub_tree = self.train(sub_train_df)
node_tree.add_node(f, sub_tree)
# pprint.pprint(node_tree.tree)
return node_tree
def fit(self, train_data):
self._tree = self.train(train_data)
return self._tree
def predict(self, X_test):
return self._tree.predict(X_test)
datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
tree
dt.predict(['老年', '否', '否', '一般'])
3. 熟悉sklearn库中的决策树算法:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
使用Iris数据集,我们可以构建如下树:
# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = [
'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
]
data = np.array(df.iloc[:100, [0, 1, -1]])
# print(data)
return data[:, :2], data[:, -1],iris.feature_names[0:2]
X, y,feature_name= create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
4. 针对iris数据集,应用sklearn的决策树算法进行类别预测:
决策树分类
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
from sklearn import tree
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train,)
clf.score(X_test, y_test)
![](https%3A%2F%2Fimg.wanganfeng.com%2FImage-resp%2F202210241534552.png
一旦经过训练,就可以用 plot_tree函数绘制树:
tree.plot_tree(clf)
也可以导出树
tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open('mytree.pdf') as f:
dot_graph = f.read()
graphviz.Source(dot_graph)
ID3、C4.5算法的应用场景
ID3算法应用场景:
它的基础理论清晰,算法比较简单,学习能力较强,适于处理大规模的学习问题,是数据挖掘和知识发现领域中的一个很好的范例,为后来各学者提出优化算法奠定了理论基础。ID3算法特别在机器学习、知识发现和数据挖掘等领域得到了极大发展。
C4.5算法应用场景:
C4.5算法具有条理清晰,能处理连续型属性,防止过拟合,准确率较高和适用范围广等优点,是一个很有实用价值的决策树算法,可以用来分类,也可以用来回归。C4.5算法在机器学习、知识发现、金融分析、遥感影像分类、生产制造、分子生物学和数据挖掘等领域得到广泛应用。
决策树剪枝策略
剪枝的目的在于:缓解决策树的"过拟合",降低模型复杂度,提高模型整体的学习效率
(决策树生成学习局部的模型,而决策树剪枝学习整体的模型)
基本策略:
- 预剪枝:是指在决策树生成过程中,对每一个结点在划分前进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶子结点。
优点:降低了过拟合地风险,并显著减少了决策树地训练时间开销和测试时间开销。
缺点:有些分支地当前划分虽不能提升泛化性能、甚至可能导致泛化性能下降,但是在其基础上进行地后续划分却可能导致性能显著提高;
预剪枝基于'贪心'本质禁止这些分支展开,给预剪枝决策树带来了欠拟合的风险。 - 后剪枝:先从训练集生成一棵完整的决策树,然后自底向上地对非叶子结点进行考察,若将该结点对应地子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。
优点:一般情况下后剪枝决策树的欠拟合风险很小,泛化性能往往优于预剪枝决策树。
缺点:自底向上的注意考察,时间开销较高。
【实验小结】
实验中遇到的问题
在使用pip安装graphviz这个包后,发现还是报错。后经搜索了解,这只安装了graphviz的pyhon调用接口,使用的话还需要下载并安装graphviz的安装文件。随后卸载重装pip中的graphviz包。
标签:datasets,self,feature,算法,train,实验,ent,data,决策树 From: https://www.cnblogs.com/wanganfeng/p/16821731.html