一、单步sarsa
import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm # tqdm是显示循环进度条的库 class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow #4 self.ncol = ncol #12 self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) next_state = self.y * self.ncol + self.x reward = -1 done = False if self.y == self.nrow - 1 and self.x > 0: # 下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: reward = -100 return next_state, reward, done def reset(self): # 回归初始状态,坐标轴原点在左上角 self.x = 0 self.y = self.nrow - 1 return self.y * self.ncol + self.x class Sarsa: """ Sarsa算法 """ def __init__(self, ncol, nrow, epsilon, alpha, gamma, n_action=4): self.Q_table = np.zeros([nrow * ncol, n_action]) # 初始化Q(s,a)表格,48行4列,初始为0 self.n_action = n_action # 动作个数,4个 self.alpha = alpha # 学习率=0.1 self.gamma = gamma # 折扣因子=0.9 self.epsilon = epsilon # epsilon-贪婪策略中的参数=0.1 def take_action(self, state): # 选取下一步的操作,具体实现为epsilon-贪婪 if np.random.random() < self.epsilon: action = np.random.randint(self.n_action) else: action = np.argmax(self.Q_table[state]) return action def best_action(self, state): # 用于打印策略 Q_max = np.max(self.Q_table[state]) a = [0 for _ in range(self.n_action)] for i in range(self.n_action): # 若两个动作的价值一样,都会记录下来 if self.Q_table[state, i] == Q_max: a[i] = 1 return a def update(self, s0, a0, r, s1, a1): td_error = r + self.gamma * self.Q_table[s1, a1] - self.Q_table[s0, a0] self.Q_table[s0, a0] += self.alpha * td_error if __name__ == '__main__': ncol = 12 nrow = 4 env = CliffWalkingEnv(ncol, nrow) np.random.seed(0) epsilon = 0.1 alpha = 0.1 gamma = 0.9 agent = Sarsa(ncol, nrow, epsilon, alpha, gamma) num_episodes = 500 # 智能体在环境中运行的序列的数量 return_list = [] # 记录每一条序列的回报 for i in range(10): # 显示10个进度条 # tqdm的进度条功能 with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): # 每个进度条的序列数 episode_return = 0 state = env.reset() action = agent.take_action(state) done = False while not done: next_state, reward, done = env.step(action) next_action = agent.take_action(next_state) episode_return += reward # 这里回报的计算不进行折扣因子衰减 agent.update(state, action, reward, next_state, next_action) state = next_state action = next_action return_list.append(episode_return) if (i_episode + 1) % 10 == 0: # 每10条序列打印一下这10条序列的平均回报 pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:]) }) pbar.update(1) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('Sarsa on {}'.format('Cliff Walking')) plt.show() def print_agent(agent, env, action_meaning, disaster=[], end=[]): for i in range(env.nrow): for j in range(env.ncol): if (i * env.ncol + j) in disaster: print('****', end=' ') elif (i * env.ncol + j) in end: print('EEEE', end=' ') else: a = agent.best_action(i * env.ncol + j) pi_str = '' for k in range(len(action_meaning)): pi_str += action_meaning[k] if a[k] > 0 else 'o' print(pi_str, end=' ') print() action_meaning = ['^', 'v', '<', '>'] print('Sarsa算法最终收敛得到的策略为:') print_agent(agent, env, action_meaning, list(range(37, 47)), [47])
二、多步sarsa
import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm # tqdm是显示循环进度条的库 class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow #4 self.ncol = ncol #12 self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) next_state = self.y * self.ncol + self.x reward = -1 done = False if self.y == self.nrow - 1 and self.x > 0: # 下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: reward = -100 return next_state, reward, done def reset(self): # 回归初始状态,坐标轴原点在左上角 self.x = 0 self.y = self.nrow - 1 return self.y * self.ncol + self.x class nstep_Sarsa: """ n步Sarsa算法 """ def __init__(self, n, ncol, nrow, epsilon, alpha, gamma, n_action=4): self.Q_table = np.zeros([nrow * ncol, n_action]) self.n_action = n_action self.alpha = alpha self.gamma = gamma self.epsilon = epsilon self.n = n # 采用n步Sarsa算法 self.state_list = [] # 保存之前的状态 self.action_list = [] # 保存之前的动作 self.reward_list = [] # 保存之前的奖励 def take_action(self, state): if np.random.random() < self.epsilon: action = np.random.randint(self.n_action) else: action = np.argmax(self.Q_table[state]) return action def best_action(self, state): # 用于打印策略 Q_max = np.max(self.Q_table[state]) a = [0 for _ in range(self.n_action)] for i in range(self.n_action): if self.Q_table[state, i] == Q_max: a[i] = 1 return a def update(self, s0, a0, r, s1, a1, done): self.state_list.append(s0) self.action_list.append(a0) self.reward_list.append(r) if len(self.state_list) == self.n: # 若保存的数据可以进行n步更新 G = self.Q_table[s1, a1] # 得到Q(s_{t+n}, a_{t+n}) for i in reversed(range(self.n)): G = self.gamma * G + self.reward_list[i] # 不断向前计算每一步的回报 # 如果到达终止状态,最后几步虽然长度不够n步,也将其进行更新 if done and i > 0: s = self.state_list[i] a = self.action_list[i] self.Q_table[s, a] += self.alpha * (G - self.Q_table[s, a]) s = self.state_list.pop(0) # 将需要更新的状态动作从列表中删除,下次不必更新 a = self.action_list.pop(0) self.reward_list.pop(0) # n步Sarsa的主要更新步骤 self.Q_table[s, a] += self.alpha * (G - self.Q_table[s, a]) if done: # 如果到达终止状态,即将开始下一条序列,则将列表全清空 self.state_list = [] self.action_list = [] self.reward_list = [] if __name__ == '__main__': ncol = 12 nrow = 4 env = CliffWalkingEnv(ncol, nrow) np.random.seed(0) n_step = 5 # 5步Sarsa算法 alpha = 0.1 epsilon = 0.1 gamma = 0.9 agent = nstep_Sarsa(n_step, ncol, nrow, epsilon, alpha, gamma) num_episodes = 500 # 智能体在环境中运行的序列的数量 return_list = [] # 记录每一条序列的回报 for i in range(10): # 显示10个进度条 # tqdm的进度条功能 with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): # 每个进度条的序列数 episode_return = 0 state = env.reset() action = agent.take_action(state) done = False while not done: next_state, reward, done = env.step(action) next_action = agent.take_action(next_state) episode_return += reward # 这里回报的计算不进行折扣因子衰减 agent.update(state, action, reward, next_state, next_action, done) state = next_state action = next_action return_list.append(episode_return) if (i_episode + 1) % 10 == 0: # 每10条序列打印一下这10条序列的平均回报 pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:]) }) pbar.update(1) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('5-step Sarsa on {}'.format('Cliff Walking')) plt.show() def print_agent(agent, env, action_meaning, disaster=[], end=[]): for i in range(env.nrow): for j in range(env.ncol): if (i * env.ncol + j) in disaster: print('****', end=' ') elif (i * env.ncol + j) in end: print('EEEE', end=' ') else: a = agent.best_action(i * env.ncol + j) pi_str = '' for k in range(len(action_meaning)): pi_str += action_meaning[k] if a[k] > 0 else 'o' print(pi_str, end=' ') print() action_meaning = ['^', 'v', '<', '>'] print('5步Sarsa算法最终收敛得到的策略为:') print_agent(agent, env, action_meaning, list(range(37, 47)), [47])
三、Q_learning
import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm # tqdm是显示循环进度条的库 class CliffWalkingEnv: def __init__(self, ncol, nrow): self.nrow = nrow #4 self.ncol = ncol #12 self.x = 0 # 记录当前智能体位置的横坐标 self.y = self.nrow - 1 # 记录当前智能体位置的纵坐标 def step(self, action): # 外部调用这个函数来改变当前位置 # 4种动作, change[0]:上, change[1]:下, change[2]:左, change[3]:右。坐标系原点(0,0) # 定义在左上角 change = [[0, -1], [0, 1], [-1, 0], [1, 0]] self.x = min(self.ncol - 1, max(0, self.x + change[action][0])) self.y = min(self.nrow - 1, max(0, self.y + change[action][1])) next_state = self.y * self.ncol + self.x reward = -1 done = False if self.y == self.nrow - 1 and self.x > 0: # 下一个位置在悬崖或者目标 done = True if self.x != self.ncol - 1: reward = -100 return next_state, reward, done def reset(self): # 回归初始状态,坐标轴原点在左上角 self.x = 0 self.y = self.nrow - 1 return self.y * self.ncol + self.x class QLearning: """ Q-learning算法 """ def __init__(self, ncol, nrow, epsilon, alpha, gamma, n_action=4): self.Q_table = np.zeros([nrow * ncol, n_action]) # 初始化Q(s,a)表格 self.n_action = n_action # 动作个数 self.alpha = alpha # 学习率 self.gamma = gamma # 折扣因子 self.epsilon = epsilon # epsilon-贪婪策略中的参数 def take_action(self, state): #选取下一步的操作 if np.random.random() < self.epsilon: action = np.random.randint(self.n_action) else: action = np.argmax(self.Q_table[state]) return action def best_action(self, state): # 用于打印策略 Q_max = np.max(self.Q_table[state]) a = [0 for _ in range(self.n_action)] for i in range(self.n_action): if self.Q_table[state, i] == Q_max: a[i] = 1 return a def update(self, s0, a0, r, s1): td_error = r + self.gamma * self.Q_table[s1].max( ) - self.Q_table[s0, a0] self.Q_table[s0, a0] += self.alpha * td_error ncol = 12 nrow = 4 env = CliffWalkingEnv(ncol, nrow) np.random.seed(0) epsilon = 0.1 alpha = 0.1 gamma = 0.9 agent = QLearning(ncol, nrow, epsilon, alpha, gamma) num_episodes = 500 # 智能体在环境中运行的序列的数量 return_list = [] # 记录每一条序列的回报 for i in range(10): # 显示10个进度条 # tqdm的进度条功能 with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar: for i_episode in range(int(num_episodes / 10)): # 每个进度条的序列数 episode_return = 0 state = env.reset() done = False while not done: action = agent.take_action(state) next_state, reward, done = env.step(action) episode_return += reward # 这里回报的计算不进行折扣因子衰减 agent.update(state, action, reward, next_state) state = next_state return_list.append(episode_return) if (i_episode + 1) % 10 == 0: # 每10条序列打印一下这10条序列的平均回报 pbar.set_postfix({ 'episode': '%d' % (num_episodes / 10 * i + i_episode + 1), 'return': '%.3f' % np.mean(return_list[-10:]) }) pbar.update(1) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('Q-learning on {}'.format('Cliff Walking')) plt.show() def print_agent(agent, env, action_meaning, disaster=[], end=[]): for i in range(env.nrow): for j in range(env.ncol): if (i * env.ncol + j) in disaster: print('****', end=' ') elif (i * env.ncol + j) in end: print('EEEE', end=' ') else: a = agent.best_action(i * env.ncol + j) pi_str = '' for k in range(len(action_meaning)): pi_str += action_meaning[k] if a[k] > 0 else 'o' print(pi_str, end=' ') print() action_meaning = ['^', 'v', '<', '>'] print('Q-learning算法最终收敛得到的策略为:') print_agent(agent, env, action_meaning, list(range(37, 47)), [47])
标签:return,self,list,state,差分,时序,算法,ncol,action From: https://www.cnblogs.com/zhangxianrong/p/18050687