首页 > 编程语言 >基于EMD的滚动轴承故障诊断算法matlab仿真

基于EMD的滚动轴承故障诊断算法matlab仿真

时间:2024-02-19 22:22:24浏览次数:39  
标签:EMD plot 滚动轴承 imf handles 故障诊断 IMF num2str matlab

1.算法运行效果图预览

 

2.算法运行软件版本

matlab2022a

 

 

3.算法理论概述

        基于经验模态分解(Empirical Mode Decomposition,EMD)的滚动轴承故障诊断算法是一种有效的非平稳信号处理方法,特别适用于处理非线性、非平稳的振动信号。该方法通过自适应地将复杂信号分解为一系列固有模态函数(Intrinsic Mode Functions,IMFs),进而提取出信号的时频特征,为滚动轴承的故障诊断提供有力支持。

 

3.1EMD的基本原理

        EMD方法的核心思想是根据信号自身的局部时域特性,自适应地将其分解为一系列固有模态函数。每个IMF代表信号中不同频率尺度的振荡模式,且具有明确的物理意义。

 

固有模态函数(IMF)

固有模态函数是满足以下两个条件的函数:

 

在整个数据序列中,极值点(包括极大值点和极小值点)的数量与过零点的数量相等或最多相差一个。

在任意时刻,由局部极大值点定义的上包络线和由局部极小值点定义的下包络线的均值为零。

筛分过程

EMD通过以下步骤对信号进行筛分,得到一系列IMF:

 

3.2 基于EMD的滚动轴承故障诊断算法

信号预处理

        首先,对采集到的滚动轴承振动信号进行预处理,包括降噪、去趋势等,以减少噪声和其他干扰因素对故障诊断的影响。

 

EMD分解

        将预处理后的信号作为输入,应用EMD方法进行分解,得到一系列IMF。每个IMF代表信号中不同频率尺度的振荡模式,反映了滚动轴承不同故障特征的信息。

 

特征提取

        从分解得到的IMFs中提取出与滚动轴承故障相关的特征。常用的特征包括IMF的能量、均方根值、峰值、峭度等。这些特征能够有效地描述滚动轴承的状态和故障类型。

 

故障诊断

        利用提取的特征构建故障诊断模型实现对滚动轴承故障类型的自动识别和诊断。

 

        为了验证基于EMD的滚动轴承故障诊断算法的有效性,可以采用实验数据进行验证。首先,采集不同状态下(正常、不同故障类型)的滚动轴承振动信号;然后,应用EMD方法进行信号分解和特征提取;最后,利用提取的特征训练故障诊断模型,并对测试数据进行故障诊断。通过比较诊断结果与真实故障类型的符合程度,评估算法的性能和准确性。

 

 

 

4.部分核心程序

axes(handles.axes5) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(1,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(1),')']); 
title(['imf(',num2str(1),')信号']);
xlim([0,t(end)]);
 
axes(handles.axes7) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(1),')频谱']);
    
axes(handles.axes8) 
[yt,Vm]=func_baoluo(IMF(1,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(1),')包络谱']);
xlim([0,500]);
 
 
axes(handles.axes9) 
[x,t,ssf,yy,fxs]=plotspec2(IMF(2,:),1/fs);
plot(t,x)   
xlabel('Sample number');
ylabel(['imf(',num2str(2),')']); 
title(['imf(',num2str(2),')信号']);
xlim([0,t(end)]);
 
axes(handles.axes10) 
plot(ssf,abs(fxs))         % plot magnitude spectrum
xlabel('频率'); 
ylabel('幅度')   % label the axes
title(['imf(',num2str(2),')频谱']);
    
axes(handles.axes11) 
[yt,Vm]=func_baoluo(IMF(2,:),fs,1);
[maxv,maxl]=max(Vm);
hold on
plot(yt(maxl),maxv,'r*');
title(['imf(',num2str(2),')包络谱']);
xlim([0,500]);
 
 
 
 
 
if LEVELview>=3
figure;
for i=1:LEVELview
    
 
    [x,t,ssf,yy,fxs]=plotspec2(IMF(i,:),1/fs);
    
    subplot(LEVEL,3,3*i-2);
    plot(t,x)   
    xlabel('Sample number');
    ylabel(['imf(',num2str(i),')']); 
    title(['imf(',num2str(i),')信号']);
    xlim([0,t(end)]);
    
    
    subplot(LEVEL,3,3*i-1);
    plot(ssf,abs(fxs))         % plot magnitude spectrum
    xlabel('频率'); 
    ylabel('幅度')   % label the axes
    title(['imf(',num2str(i),')频谱']);
    
    
    subplot(LEVEL,3,3*i);
 
    [yt,Vm]=func_baoluo(IMF(i,:),fs,1);
    [maxv,maxl]=max(Vm);
    maxv
    hold on
    plot(yt(maxl),maxv,'r*');
    
    title(['imf(',num2str(i),')包络谱']);
    xlim([0,500]);
    
end
end
 
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
clc;
clear;
close all;
 
 
% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
parameters;
 
figure;
for i=1:LEVEL
y_cum = cumest(IMF(i,:)',4,512);
    subplot(LEVEL,2,2*i-1);
    plot(t,x)   
    xlabel('Sample number');
    ylabel(['imf(',num2str(i),')']); 
    title(['imf(',num2str(i),')信号']);
    xlim([0,t(end)]);
    
    
    subplot(LEVEL,2,2*i);
    plot(y_cum)   
    title(['imf(',num2str(i),')高阶谱']);
end

  

标签:EMD,plot,滚动轴承,imf,handles,故障诊断,IMF,num2str,matlab
From: https://www.cnblogs.com/matlabworld/p/18022073

相关文章

  • 基于FPGA的图像Robert变换实现,包括tb测试文件和MATLAB辅助验证
    1.算法运行效果图预览 fpga的结果导入到matlab显示: 2.算法运行软件版本vivado2019.2 matlab2022a 3.算法理论概述       随着数字图像处理技术的不断发展,边缘检测作为图像处理的基本操作,其在机器视觉、自动驾驶、医学影像分析等领域的应用日益广泛。Rober......
  • m基于码率兼容打孔LDPC码oms最小和译码算法的LDPC编译码matlab误码率仿真
    1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要       码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(BeliefPropagation)译码算法......
  • 基于稀疏表示的小波变换多光谱图像融合算法matlab仿真
    1.算法运行效果图预览小波变换融合   PCA融合   基于稀疏表示的小波变换多光谱图像融合算法   性能指标对比   2.算法运行软件版本matlab2022a 3.算法理论概述       随着遥感技术的飞速发展,多光谱图像融合在地球观测、环境监测、......
  • 基于深度学习的性别识别算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本matlab2022a  3.算法理论概述        随着深度学习的飞速发展,其在计算机视觉领域的应用越来越广泛。性别识别作为计算机视觉的一个重要分支,对于人脸分析、社交网络和机器人交互等领域有着重要意义。性别识别是......
  • matlab练习程序(Schur补)
    Schur补是一种矩阵分解方法,通过将一个大的矩阵分解为几个较小的矩阵来简化计算,通常能够提高矩阵求逆的速度。对于形如下面的矩阵:可以把矩阵划分为左上、右上、左下、右下四个分块矩阵。得到矩阵:根据A和D的奇异性,可以分两种情况。如果A可逆,则有:如果D可逆,则有:公式两边同......
  • 基于双树复小波变换和稀疏表示的多光谱和彩色图像融合算法matlab仿真
    1.算法运行效果图预览  2.算法运行软件版本MATLAB2022a 3.算法理论概述     基于双树复小波变换(Dual-TreeComplexWaveletTransform,DT-CWT)和稀疏表示的多光谱和彩色图像融合算法是一种先进的图像融合技术,旨在将多光谱图像(MultispectralImages,MSI)和彩......
  • 基于FPGA的图像RGB转CIE-Lab实现,包含testbench和MATLAB辅助验证程序
    1.算法运行效果图预览 将FPGA的结果导入到matlab,并和matlab的仿真结果进行对比:   2.算法运行软件版本vivado2019.2 matlab2022a 3.算法理论概述     RGB和CIE-Lab是两种常用的颜色空间,它们在不同的应用领域中各有优势。RGB颜色空间主要用于显示设备,而C......
  • 基于chaos混沌的彩色图像加解密系统matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述      基于混沌(Chaos)的彩色图像加解密系统是一种新型的图像加密技术,它利用了混沌理论的特性来提供高度安全的图像加密。下面将详细介绍这种系统的原理、数学公式和实现过程。 3.1混沌理论......
  • 基于yolov2深度学习网络的人员跌倒检测识别matlab仿真
    1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述      跌倒是一种常见的健康风险,特别是在老年人和患有某些疾病的人群中。及时检测跌倒并采取相应措施对于降低伤害风险至关重要。近年来,深度学习在图像处理和计算机视觉领域取得了显著进展......
  • 基于NIQE算法的图像无参考质量评价算法matlab仿真
    1.算法运行效果图预览   2.算法运行软件版本MATLAB2022a  3.算法理论概述      NIQE(NaturalnessImageQualityEvaluator)算法是一种无参考图像质量评价算法,旨在评估图像的自然度,即图像看起来是否像自然场景。NIQE基于一组“质量感知”特征,并将其拟合到MV......