首页 > 编程语言 >[c/c++][考研复习笔记]内部排序篇学习笔记

[c/c++][考研复习笔记]内部排序篇学习笔记

时间:2023-07-25 16:56:04浏览次数:47  
标签:include 笔记 int mid c++ high low 排序 考研

考研排序复习笔记

  • 插入排序

#include<stdio.h>
#include<stdlib.h>

#define MaxSize 9
//折半插入排序 
void ZBInsertSort(int A[],int n){
	int i,j,high,low,mid;
	for(i=2;i<=n;i++){
		A[0] = A[i];
		low = 1;high = i-1;
		while(low<=high){
			mid=(low+high)/2;
			if(A[mid]>A[0]){
				high=mid-1;
			}
			else{
				low = mid+1;
			}
		}
		for(j = i-1;j>=high+1;--j){
			A[j+1] = A[j];
		}
		A[high+1] = A[0];
	}
}

//直接插入排序(带哨兵)
void InsertSort(int A[],int n){
	int i,j;
	for(i=2;i<=n;i++){
		if(A[i]<A[i-1]){
			A[0] = A[i];
			for(j =i-1;A[0]<A[j];j--){
				A[j+1] = A[j];
			}
			A[j+1] = A[0];
		}
	}
} 


//插入排序的复杂度都是O(n^2) 
int main(){
	int A[] = {0,49,38,65,97,76,13,27,49};
	for(int i = 1;i<MaxSize;i++){
		printf("%d ",A[i]);
	}
	ZBInsertSort(A,8);
	printf("\n");
	for(int i = 1;i<MaxSize;i++){
		printf("%d ",A[i]);
	}
	return 0;
}

image-20230723155126455

image-20230723155159496

空间复杂度:\(O(1)\)

平均时间复杂度\(:O(n^2)\)

相当于从A[2]一路顺序查找下去,是A[1]往后逐渐有序。

开始后A[1]----A[2]----是有序的

这部分可以使用折半查找

image-20230723155511552

复习折半查找的停止条件:low>high

  • A[0]>mid

    • 数在mid后面,low = mid + 1
  • A[0]<mid

    • 说明数在mid前面部分,high = mid - 1
  • 希尔排序(Shell Sort)

灵感来源:插入排序在基本有序的情况下表现很好

image-20230723155949398

所以希尔排序的思想是基于这种基本有序

image-20230723160104903

image-20230723160130500

image-20230723160146775

希尔排序代码实现

#include<stdio.h>
#include<stdlib.h>

#define MaxSize 9

//希尔排序 
//往后逐个对比 
void ShellSort(int A[],int n){
	int d,i,j;
	for(d = n/2;d>=1;d = d/2){
		for(i=d+1;i<=n;++i){
			if(A[i]<A[i-d]){
				A[0] = A[i];
				for(j=i-d;j>0 && A[0]<A[j];j-=d)
					A[j+d] = A[j];
				A[j+d] = A[0];
			}
		}
	}
}
//希尔排序
//一串捋直了再下一串 
void testShellSort(int A[],int n){
	int d,i,j;
	for(d = n/2;d>=1;d=d/2){ //步长变化 
		for(i=1;i<=d;i++){ //多少组 
			for(i=d+1;i<=n;i+=d){ //遍历每一组的所有数字 
				if(A[i] < A[i-d]){
					A[0] = A[i]; //小的放在A[0] 
					for(j=i-d;j>0 && A[0]<A[j];j-=d){
						A[j+d] = A[j];
					}
					A[j+d] = A[0];
				}
			}
		}
	}
} 
//插入排序的复杂度都是O(n^2) 
int main(){
	int A[] = {NULL,49,38,65,97,76,13,27,49};
	for(int i = 1;i<MaxSize;i++){
		printf("%d ",A[i]);
	}
	testShellSort(A,8);
	printf("\n");
	for(int i = 1;i<MaxSize;i++){
		printf("%d ",A[i]);
	}
	return 0;
}

以上第一种是:i++,逐个逐个比较各自的串

第二种是 只扫描A[0] -> A[1] ->A[2]->>>一个d,在每次扫描到一个串的时候完成这个串的排序

image-20230723160530162

image-20230723160705693

image-20230723160832947

\(空间复杂度为O(1)\)

\(时间复杂度与选取的d挂钩\)

当第一次选取d=1时,希尔排序 退化为 插入排序

稳定性分析:image-20230723161205093

稳定性:不稳定

且只使用于顺序表,不使用于链表

  • 冒泡排序(Bubble Sort)

基于交换的排序:根据序列中两个元素的关键字的比较结果来对换两个记录在序列中的位置

image-20230723161518835

image-20230723161636155

image-20230723161809053

当最后一趟没有任何交换时,说明已经有序了

#include<stdio.h>
#include<stdlib.h>
void swap(int &a,int &b){
	int temp;
	temp = a;
	a = b;
	b = temp;
}
//MM手写版 version.1 
void BubbleSort(int A[],int n){
	for(int i=1;i<=n-1;i++){  
		bool flag = false;
		for(int j=n-1;j>=i;j--){ //犯错1:int j=n-1;j=i;j-- 每次判断的时候都会重新定义j导致永远退不出循环! 
			if(A[j]<A[j-1]){
				swap(A[j],A[j-1]);
				flag = true;
			}
		}
		if(flag == false){ //犯错2:if flag == false 太粗心! 
			break;
		}
	}
}
// mm手写版与王道给的基本一致 
//王道版
void WD_BubbleSort(int A[],int n){
	for(int i=0;i<n-1;i++){			//交换的趟数 = n-1
		bool flag = false; //表示本趟冒泡是否发生交换的标志
		for(int j=n-1;j>i;j--){ //一趟冒泡
			if(A[j-1] > A[j]){   //若为逆,则交换
				swap(A[j-1],A[j]);
				flag = true;
			}
		}
		if(flag == false){ //本趟遍历之后如果没有发生交换,则已经有序
			break;
		}
	}
} 

int main(){
	int list[] = {49,38,65,97,76,13,27,49};
	
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	BubbleSort(list,8);
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	return 0;
} 

image-20230723165228968

冒泡排序显然是稳定的

image-20230723165325388

且适用于链表

代码给的是从后往前冒,其实从前往后也是可以的所以要注意题目给的条件

易忘点:如果一趟排序过程未发生“交换”,则可以提前结束

  • 快速排序

如名字所言:确实是最厉害的

image-20230723165950452

image-20230723170009459

image-20230723170031075

image-20230723170055308

核心思想:

\(high所指的>基准:high--\)

\(high所指 < 基准:放到low那里\)

\(low所指 < 基准:low++\)

\(low所指 > 基准:放到high那里\)

终止条件: \(low == high\)

image-20230723170428935

于是划分为$$【<A】 | 【A】 | 【>A】$$

再分别在两边重复以上过程image-20230723170643800

#include<stdio.h>
#include<stdlib.h>

//Partition (分割) 
int Partition(int A[],int low,int high){
	int pivot = A[low];  //pivot:枢轴
	while(low < high){
		while(low<high && A[high] >=pivot) --high; //high前推找比pivot小的 
		A[low] = A[high];							 
		while(low<high && A[low] <=pivot) ++low;	//low后推找比pivot大的 
		A[high] = A[low];
	}
	A[low] = pivot;
	return low;
} 

void QuickSort(int A[],int low,int high){
	if(low<high){ //递归跳出的条件 
		int pivotpos = Partition(A,low,high); //划分 
		QuickSort(A,low,pivotpos-1);			//划分左子表 
		QuickSort(A,pivotpos+1,high); 			//划分右子表 
	}
} 

int main(){
	int list[] = {49,38,65,97,76,13,27,49};
	
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	QuickSort(list,0,7);
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	return 0;
} 

image-20230723172958047

空间复杂度:

image-20230723173043560

其实分析起来

本质上就像一个二叉树

image-20230723173737768

最好/最坏情况分析:image-20230723173929571

image-20230723174131703

快速排序的稳定性:不稳定!image-20230723174233522image-20230723174253368image-20230723174310578

  • 简单选择排序

image-20230723174600817

从头到尾扫描 1 次image-20230723174802361然后交换位置

从头到尾扫描 2 次image-20230723174837082 然后交换位置

从头到尾扫描 3 次image-20230723174917223然后交换位置

\(n个元素的简单排序需要处理n-1趟\)

代码实现:

#include<stdio.h>
#include<stdlib.h>
void swap(int &a,int &b){
	int temp;
	temp = a;
	a = b;
	b = temp;
}
//MM手写版 version.1 
//王道版交换的是index,我交换的是数据 
void SelectSort(int A[],int n){
	for(int i=0;i<n;i++){ //需要排n-1次 *error:i<n-1就行了 因为n=8,最后一个元素实际下标是7 
		int min = A[i]; 
		for(int j=i;j<n;j++){ //逐行扫描 
			if(A[j]<min){
				swap(min,A[j]); 
			}
		}
		A[i] = min;
	} 
}

//王道版 简单选择排序
void WD_SelectSort(int A[],int n){
	for(int i=0;i<n-1;i++){   //一共排n-1趟 
		int min = i;			//记录最小元素位置 
		for(int j=i+1;j<n;j++)
			if(A[j]<A[min]) min=j;	//更新最小元素位置 
		if(min != i) swap(A[i],A[min]); 
	}
} 

int main(){
	int list[] = {49,38,65,97,76,13,27,49};
	
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	WD_SelectSort(list,8);
	for(int i = 0;i<=7;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	return 0;
} 

image-20230723180328259

image-20230723180412474

可以使用链表来练练手!

  • 堆排序(Heap Sort)

定义:

image-20230723195223614

在顺序存储的完全二叉树中,非终端节点编号 i<=[n/2]

image-20230723195614017

先找到 [8/2] == 4 也就是为A[4]这个结点,查看是否满足根<=左右

image-20230723195730601

image-20230723195759406

53这个结点下坠后,导致下一层子树不符合大根堆,还需再调整(即小元素不断“下坠”

得到这样一个完整的大根堆之后

踢出最大的87,即将A[0]与最后一个互换

image-20230723202153407

蓝色部分失去大根堆特性,继续重复步骤,变成大根堆,再交换一次

image-20230723202251992

重复以此步骤:image-20230723202350866

代码实现:

#include<stdio.h>
#include<stdlib.h>

void swap(int &a,int &b){
	int temp;
	temp = a;
	a = b;
	b = temp;
}
//将以k为根的子树调整为大根堆
void HeadAdjust(int A[],int k,int len){
	A[0] = A[k];		//A[0]暂存子树的根结点
	for(int i=2*k;i<=len;i*=2){	//沿key较大的子节点向下筛选 
		if(i<len && A[i]<A[i+1])
			i++;
		if(A[0]>=A[i]){
			break;
		}
		else{
			A[k] = A[i];
			k=i;
		} 
	} 
	A[k] = A[0];
} 
//建立大根堆
void BuildMaxHeap(int A[],int len){
	for(int i=len/2;i>0;i--){		//从后往前调整非终端结点 
		HeadAdjust(A,i,len);
	}
} 

void HeapSort(int A[],int len){
	BuildMaxHeap(A,len);
	for(int i=len;i>1;i--){		//i=len 指向待排序元素序列的最后一个(堆底元素) 
		swap(A[i],A[1]);
		HeadAdjust(A,1,i-1);
	}
}
int main(){
	int list[] = {NULL,53,17,78,9,45,65,87,32};
	
	for(int i = 1;i<=8;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	HeapSort(list,8);
	for(int i = 1;i<=8;i++){
		printf("%d ",list[i]);
	}
	printf("\n");
	return 0;
} 

image-20230723203105566

image-20230723203201691建堆的过程,关键字对比次数不超过4n,建堆时间复杂度=O(n)

堆排序的稳定性:

image-20230723203444464image-20230723203451157

image-20230723203528229image-20230723203543937

结论:堆排序是不稳定

  • 归并排序(Merge Sort)

Merge:归并、合并

把两个或多个已经有序的序列合并成一个

一般采用2路归并

A[]是原本需要排序的数组

先定义空数组B[],然后第一个for循环把A数组复制到B数组

用 i,j 分别放在两个low--mid,mid+1--high两个有序数组上

依次对比

更新A[]

image-20230725153424405

image-20230725151208941

如上图: 在复制完数组后

for 后面 写的是 i=low,j=mid+1,k=low

for的结束条件是i,j越界 即:i<=mid和j<=high

实现思路:

用MergeSort递归调用,将image-20230725151626448

递归到最底层将两个个数为1的子序列看成两路

做排序

再一步一步往大了的去排序

#include<stdio.h>
#include<stdlib.h>

int *B = (int *)malloc(7*sizeof(int)); //定义辅助数组B


//A[low..mid]和A[mid+1...high]各自有序,将这两个部分归并
void Merge(int A[],int low,int mid,int high){
	int i,j,k;
	for(k = low;k<=high;k++)
		B[k] = A[k];
	for(i = low,j = mid+1,k=i;i<=mid && j<=high;k++){
		if(B[i]<=B[j])
			A[k] = B[i++];	//将较小的值复制到A中 
		else
			A[k] = B[j++];
	}
	while(i<=mid)	A[k++] = B[i++];
	while(j<=high)	A[k++] = B[j++];
} 

void MergeSort(int A[],int low,int high){
	if(low<high){	
		int mid=(low+high)/2;	//从中间划分 
		MergeSort(A,low,mid);	//左半部分归并 
		MergeSort(A,mid+1,high);	//右半 
		Merge(A,low,mid,high);	//归并 
	}
}


int main(){
	int A[] = {49,38,65,97,76,13,27};
	
	for(int i = 0;i<=6;i++){
		printf("%d ",A[i]);
	}
	printf("\n");
	MergeSort(A,0,6);
	for(int i = 0;i<=6;i++){
		printf("%d ",A[i]);
	}
	printf("\n");
	free(B);
	return 0;
} 

归并树 类似于 倒立的二叉树image-20230725153128543

  • 基数排序(Radix Sort)

image-20230725154220583

关键字位 权重递增的次序

image-20230725154213990

image-20230725154516424

image-20230725154720539基你太稳!

基你太稳

基数排序的适用场景:

image-20230725155028395

以上就是所有的内部排序

  • 插入排序
    • 直接插入排序
    • 希尔排序
  • 选择排序
    • 简单选择排序
    • 堆排序
  • 交换排序
    • 冒泡排序
    • 快速排序
  • 归并排序
  • 基数排序

标签:include,笔记,int,mid,c++,high,low,排序,考研
From: https://www.cnblogs.com/jinwan/p/17580263.html

相关文章

  • Numpy学习笔记
    一、Numpy基础数据结构NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:①实际的数据②描述这些数据的元数据二、常见方法importnumpyasnpar=np.array([[[1,2,3,4,5,6,7],[1,2,3,4,5,6,7],[1,2,3,4,5,6,7]],[[1,2,3,4,5,6,7],[1,2,3,4,5,6,7],[1,2,3,4,5,......
  • 手写数字识别代码学习笔记
    图像预处理importtorchvision.transformsastransforms#定义数据预处理步骤【compose->组成】transform=transforms.Compose([transforms.Resize((128,128)),#将图像大小调整为128x128像素transforms.RandomCrop(100),#随机裁剪图像为10......
  • Redis Scan命令踩坑笔记
    前记大部分人在接触Redis时就都会了解到Redis是以单线程的形式处理用户命令,导致O(N)的命令有极大的几率会阻塞Redis,所以在使用Redis时需要放弃一些O(n)命令的使用,比如不要去使用KEYS命令而应该使用SCAN命令,然而SCAN命令也有一些坑。1.踩到的坑为了减少MySQL的压力,在部分变动比较少......
  • C++强大、高性能、易于使用的format库
     fmtlib/fmt:Amodernformattinglibrary(github.com) {fmt} isanopen-sourceformattinglibraryprovidingafastandsafealternativetoCstdioandC++iostreams. DocumentationCheatSheetsQ&A:askquestionson StackOverflowwiththetagfmt.......
  • 英语笔记:一般现在时态主谓宾结构构成方式
    主谓宾结构一般现在时态构成方式语法知识首先,上课常说的“主谓宾”其实包含了四个句型,也就是:主语+不及物动词(谓语)主语+及物动词(谓语)+宾语主语+双宾动词(谓语)+间接宾语+直接宾语主语+特定及物动词(谓语)+宾语+宾补这四个句型一般现在时态的构成方式是一样的,因此,学会了“......
  • Postgres学习笔记-Sequence自增序列
    Sequence:根据指定的规范生成整数序列创建序列CREATE[TEMPORARY|TEMP]SEQUENCEname[INCREMENT[BY]increment][MINVALUEminvalue|NOMINVALUE][MAXVALUEmaxvalue|NOMAXVALUE][START[WITH]start][CACHEcache][[NO]CYCLE]......
  • 《Pro Git》Git基础笔记
    获取Git仓库在已存在目录中初始化仓库$gitinit该命令会创建一个名为.git的隐藏文件。克隆现有的仓库$gitclone<url>#例如gitclonehttps://github.com/vuejs/vue$gitclone<url>[newname]#自定义本地仓库的名字Git支持多种数据传输协议:http://、git://或者......
  • 《Pro Git》起步笔记
    @目录什么是版本控制本地版本控制系统集中化的版本控制分布式的版本控制系统Git简史Git是什么安装Git在Linux上安装在Windows上安装初次运行Git前的配置用户信息文本编辑器检查配置信息获取帮助什么是版本控制版本控制系统(VCS)是一种记录文件内容变化以便将来查阅特定版本修订情......
  • C++20 Ranges简述
    C++20引入了范围(Ranges)的新特性,这是一种现代化的、功能强大的处理序列数据的机制。范围(Ranges)的目标是提供一种更简洁、更易读、更安全且更高效的方式来操作数据序列,代替传统的迭代器和手动循环操作。这里是C++20Ranges的一些详细解释:范围概念:范围(Ranges)是一种统一的序......
  • 论文阅读笔记:Quasi-Newton solver for robust non-rigid registration
    论文题目:Quasi-Newtonsolverforrobustnon-rigidregistration,为CVPR2020论文,并提供了开源代码,详见Fast_RNRR0.概述本论文提出了一种非刚性配准方法。......