首页 > 编程语言 >MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

MATLAB模糊C均值聚类FCM改进的推荐系统协同过滤算法分析MovieLens电影数据集

时间:2023-05-29 22:45:17浏览次数:59  
标签:矩阵 用户 CF MovieLens 算法 MATLAB 聚类 data

全文链接:http://tecdat.cn/?p=32594

原文出处:拓端数据部落公众号

在当今信息爆炸的时代,电影作为人们生活中不可或缺的娱乐方式,受到了越来越多的关注。而为了让观众能够更好地选择适合自己口味的电影,推荐系统成为了一个备受关注的研究领域。协同过滤算法是其中一种被广泛使用的方法。

本文将以MovieLens数据集为基础,帮助客户分析MATLAB模糊C均值聚类改进的协同过滤算法在推荐系统中的应用。针对MovieLens数据集进行实验,并比较传统协同过滤算法和改进后的模糊C均值聚类协同过滤算法的性能差异。最后结合实验结果进行分析和总结。

1. 首先需要了解什么是模糊C均值聚类和协同过滤算法。

  • 模糊C均值聚类(FCM)是一种基于隶属度的聚类方法,它将每个数据点对应到各个聚类中心的隶属度上。
  • 协同过滤算法是一种推荐系统算法,主要用于预测用户对未评价物品的喜欢程度。该算法基于相似性进行推荐,即根据用户行为历史信息来发现不同用户之间的相似性,并根据这些相似性为用户推荐物品。

2. 然后需要了解如何将这两种算法结合起来实现数据分析。

  • 在协同过滤算法中,我们需要计算不同用户之间或者不同物品之间的相似度。而这里可以使用模糊C均值聚类来实现。
  • 具体地说,在MovieLens数据集中,我们可以将每一个电影看作是一个向量,其中包括电影名称、导演、演员、类型等特征。然后使用模糊C均值聚类将这些电影聚类到不同的簇中。
  • 接着,我们可以计算用户和簇之间的相似度,进而推荐给用户可能感兴趣的电影。

3. 最后需要注意哪些细节问题。

  • 在使用模糊C均值聚类时,需要选择合适的参数来控制隶属度和聚类个数等因素。这需要根据具体情况进行调整。本文使用了4个聚类有效性函数值来选取最优聚类数。
  • 在计算相似度时,需要选择合适的距离或者相似性度量方法。同时还要考虑如何处理缺失数据、异常值等问题。

数据

MovieLens数据是美国Minnesota大学GroupLens项目组提供的Movielens数据集ml-100k中的u2数据。这个数据集包含了943名用户对1682部电影的评价(评分值为数字1到5,若数值越高则用户喜爱该电影的程度越高),并含有电影项目的分类特征。该数据集仅包含了评价过20部以上电影的用户评价数据,没有评分的电影数据占所有数据的比重(稀疏度)为94%。

image.png

名称描述简介每个用户至少评分物品
MovieLens 对电影的评分从1到5 943名用户对1682部电影的评价 100

评分预测的预测准确度一般通过平均绝对误差 (MAE) 计算,平均绝对偏差越小,预测的准确度越高。

 

过程与结果分析

(1)确定最佳聚类数

首先,通过比较不同聚类数相应的聚类有效性函数值来选出最佳聚类数cmax。实验结果如图所示。

图中的横坐标为聚类数,纵坐标为相应的4个聚类有效性函数值。由上述结果可知,在2到的最佳搜索范围中,不同的聚类数c得到的VPE值与VFC值呈单调趋势,而VXB与VK函数值均在c=12时单调性发生改变。

image.png

图1  MovieLens不同聚类数对应的聚类有效性函数值

类似的,图1中的横坐标为聚类数,纵坐标为相应的4个聚类有效性函数值。由上述结果可知,在2到的最佳搜索范围中,不同的聚类数c得到的VPE值与VFC值呈单调趋势,而VXB与VK函数值均在c=12时单调性发生改变。

最后得到不同判别函数在不同数据集上的指标值如表1所示。

%XB 用Xie和Beni的准则来求最优聚类数
%   u为隶属度矩阵,center为聚类中心矩阵
V=0;
for i=1:size(u,1)
    for j=1:size(u,2)
    V=V+(u(i,j))^2*(norm(data(j,:)-center(i,:)))^2;    
    end
end
fenmu=(min(pdist(center,'euclidean')))^2;

表1 Xie-Beni方法确定的最佳聚类数cmax

判别函数VPEVXBVFCVK
Movielens数据集 cmax>25 cmax=12 cmax>25 cmax=12

因此,根据Xie-Beni方法,本文选取Flixster数据集的最佳聚类数cmax为10,本文选取MovieLens数据集的最佳聚类数cmax为12。

(2)MAE指标比较

模糊C均值聚类算法的关键步骤是确定最佳聚类簇数,为检验本节给出的FCMC CF算法,我们在Movielens和Flixster数据集上进行了实验分析,并将其同K-means、K-medoids和K-mode聚类协同过滤算法进行了比较,实验结果如图所示。

%FCMC data为模糊C均值聚类的实验数据,top代表XB准则下的前10个最佳聚类数,b为该10个最佳聚类数的PE指标值
%  
for k=2:sqrt(size(data,1))
    [center u]=fcm(data,k);
    Vpe(k-1)=Bezdek(u);
    Vxb(k-1)=XB(u,center,data);
    Vfs(k-1)=FS( u,center,data);
    Vk(k-1)=Kwon( u,center,data);
end
k=2:sqrt(size(data,1));
    subplot(2,2,1),plot(k,Vpe(k-1),'- *'),xlabel('x(聚类簇数)'),ylabel('y(Vpe指标)')

k=2:sqrt(size(data,1));
subplot(2,2,2),plot(k,Vxb(k-1),'- or'),xlabel('x(聚类簇数)'),ylabel('y(Vxb指标)')
 

k=2:sqrt(size(data,1));
subplot(2,2,3),plot(k,Vfs(k-1),'- or'),xlabel('x(聚类簇数)'),ylabel('y(Vfs指标)')

k=2:sqrt(size(data,1));
Predict(i,j,D,data,itemN)

%j代表目标用户,i为j用户的邻居用户为i用户集,data为用户-物品矩阵,D为相似系数矩阵,item为用户j要预测的物品编号
tempu= find(data(j,:)~=0);%发现用户所有已评分的项目
Ru=mean(data(j,tempu));%计算用户评分的平均值
a=length(i);
fenzi=0;
for k=1:a
tempv=find(data(i(k),:)~=0);
Rv=mean(data(i(k),tempv));
fenzi=fenzi+D(j,i(k)).*(data(i(k),itemN)-Rv);
end
fenmu=0;
for k=1:a

image.png

图2 Movielens数据集不同算法MAE的比较

unction mae = MAE(CS,udata,udatatest,Fuz)
%CS为相似度矩阵,data为训练集用户项目矩阵,datatest为测试集用户项目矩阵,Fuz为标记变量(1为模糊C均值聚类协同过滤,0为传统系统过滤)
j=1;
for n=1:5:80%########最近邻数
mae(j)=0;%mae为最近邻为n的情况下的最小均方误差 
k=0;%计数变量
   for t=1:size(udatatest,1)
    
    i=topn(CS,t,n);%计算出该用户的最近邻用户集合,t为i目标用户编号,i为相邻用户编号(按相似度从高到低排列),n为n个邻居用户数,应设为?
    item=find(udatatest(t,:)~=0);%item为测试集中用户的评价项目
    if n>length(i)
           continue;

在图中,横轴为最近邻个数 k,纵轴为平均绝对偏差 MAE。曲线CF代表传统的协同过滤算法,曲线Kmean CF代表基于K均值聚类的协同过滤算法,曲线FCMC CF代表基于模糊C均值聚类有效性的协同过滤算法,曲线K medoids CF代表基于K medoids聚类的协同过滤算法。

由图图和图可以看到基于有效性指标改进的FCMC CF算法在MAE指标上要明显优于其他算法。在Movielens数据集上的实验结果表明,FCMC CF得到的MAE值要优于其他几个算法。

(3)召回率和覆盖率的比较

在接下来的TOP-N实验中,我们选择FCMC CF算法与其他算法在召回率、覆盖率指标上进行比较。

%D为相似系数矩阵,i为第i个目标用户,n为前n个最相似的用户数,输出为前n个用户的坐标信息
[a,b]=sort(D(i,:),'descend');%a为从高到低排的相似系数
top=b(1:n);
I= ind2sub(size(D), top);%J目标用户编号,I相邻用户编号(按相似度从高到低排列)
 Recall(udata,udatatest,CS,Fuz)
 Recall(udata,udatatest,CS,Fuz)
%UNTITLED Summary of this function goes here
%   Detailed explanation goes here
%N为推荐列表的长度,udata为用户项目评分矩阵
j=1;
for N=5:5:50
n=30;%n为目标用户的最近邻居用户数#######默认为3个
for q=1:size(udata,1)%计算每位用户对每个物品的预测评分
    for w=1:size(udata,2)
    I=topn(CS,q,n);%D为相似系数矩阵,i为第i个目标用户(即为q),n为前n个最相似的用户数(默认为3),输出为最近邻居用户的前n个用户的坐标信息
    rank(q,w)=Predict(I,q,CS,udata,w);%rank为用户项目预测评分矩阵,j代表目标用户(即为q),i为j用户的邻居用户为i用户集,data为用户-物品矩阵,D为相似系数矩阵,item为用户j要预测的物品编号(即为w)
    end
end

实验结果如图所示。

image.png

1111.png 图4 不同算法召回率的比较

在图中,横轴代表推荐列表长度N,纵轴分别为召回率和覆盖率。其中,每个N值对应的两条曲线图分别为FCMC CF与CF、Kmeans CF对应的函数值。

FCMC CF算法与传统CF算法和Kmeans CF算法相比,在不同的最近邻水平下具有较高的召回率和覆盖率,即新算法在推荐质量上有所改善,有效地提升了推荐精度。


%%预测函数

predictfun2( CS, t,item ,n,udata)

%%其中CS为相似度矩阵

%%item为预测的项目编号

%%t为目标用户

%%n为近邻个数

%%udata为用户-项目评分矩阵

 
%%得到的预测评分为2.24

%%实际评分为3

image.png


20_whatisemployeeexperience_v04.webp

最受欢迎的见解

1.R语言k-Shape算法股票价格时间序列聚类

2.R语言基于温度对城市层次聚类、kmean聚类、主成分分析和Voronoi图

3.R语言对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归

4.r语言鸢尾花iris数据集的层次聚类

5.Python Monte Carlo K-Means聚类实战

6.用R进行网站评论文本挖掘聚类

7.R语言KMEANS均值聚类和层次聚类:亚洲国家地区生活幸福质量异同可视化

8.PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯模型和KMEANS聚类用户画像

9.R语言基于Keras的小数据集深度学习图像分类

标签:矩阵,用户,CF,MovieLens,算法,MATLAB,聚类,data
From: https://www.cnblogs.com/tecdat/p/17441896.html

相关文章

  • m基于钱搜索算法的BCH编译码matlab仿真,仿真输出误码率曲线和编码增益曲线
    1.算法仿真效果matlab2022a仿真结果如下:  2.算法涉及理论知识概要 BCH编译码是一种纠错能力强,构造简单的信道编译码。BCH编译码的生成多项式可以由如下的式子表示:  ①BCH码是一种纠错码、线性分组码、循环码。 ②需要传输信息位数:k ③纠错能力:t ④总码长......
  • m基于Berlekamp-Massey钱搜索算法的BCH译码误码率matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要      BCH编译码是一种纠错能力强,构造简单的信道编译码。BCH编译码的生成多项式可以由如下的式子表示: ①BCH码是一种纠错码、线性分组码、循环码。 ②需要传输信息位数:k ③纠错能力:t ④总......
  • 【Matlab基础】图表绘制
    1、plot(x,y,'~')线条类型:'--'虚线,':'点线,'-.'点划线(注意虚线是双减号) 绘制多条曲线:在每一条曲线的下面加上holdon曲线标注:legend函数图表命名:title函数 常见问题:1、如何保存高清图表?“编辑-复制图窗”,然后直接在Word里右键粘贴即可。 ......
  • m基于MATLAB的发票数字信息识别算法仿真,通过形态学处理进行字符分割,通过模板匹配实
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要形态学是图像处理中应用最为广泛的技术之一,主要用于从图像中提取对表达和描绘区域形状有意义的图像分量,使后续的识别工作能够抓住目标对象最为本质的形状特征,如边界和连通区域等。同时像细化、像素化和修剪毛刺等......
  • 基于SA模拟退火优化的TWVRP路径规划matlab仿真
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要模拟退火算法(simulatedannealing,SAA)来源于固体退火原理,是一种基于概率的算法。模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增......
  • 基于GWO灰狼优化的生产线工件工序调度优化matlab仿真,仿真输出优化收敛曲线和工序调度
    1.算法仿真效果matlab2022a仿真结果如下:   2.算法涉及理论知识概要       灰狼优化算法(GWO),灵感来自于灰狼.GWO算法模拟了自然界灰狼的领导层级和狩猎机制.四种类型的灰狼,如α,β,δ,w被用来模拟领导阶层。此外,还实现了狩猎的三个主要步骤:寻找猎物、包围......
  • m基于ABC人工蜂群优化的无线传感器网络路由优化算法matlab仿真,对比优化前后网络寿命,
    1.算法仿真效果matlab2022a仿真结果如下:2.算法涉及理论知识概要无线传感器网络通常使用电池电源,因此能量有限,属于一次性使用。因此,无线传感器网络在原理和应用平台上都有自己的特点:•有限的能源和存储容量传感器节点通常布置在无人值守的运行环境中,节点能量由电池提供,但在......
  • m基于ABC人工蜂群优化的无线传感器网络路由优化算法matlab仿真,对比优化前后网络寿命,
    1.算法仿真效果matlab2022a仿真结果如下:       2.算法涉及理论知识概要       无线传感器网络通常使用电池电源,因此能量有限,属于一次性使用。因此,无线传感器网络在原理和应用平台上都有自己的特点: •有限的能源和存储容量        传感器......
  • Matlab中用m代码来控制运行Simulink仿真过程
    ✅作者简介:热爱科研的算法开发者,Python、Matlab项目可交流、沟通、学习。......
  • matlab中find函数失效的问题
    (52条消息)关于matlab中find函数失效的问题_matlabfind有时候找不到值_开飞机的小毛驴儿的博客-CSDN博客matlab中的find函数可以返回指定元素的位置,但是有时候会发现矩阵中明明存在一个数,但是返回位置却是空的,即找不到指定元素的位置。这时候需要考虑的是matlab的精度问题。如......