一、NIO基本简介
NIO (New lO)也有人称之为java non-blocking lO是从Java 1.4版本开始引入的一个新的IO API,可以替代标准的Java lO API。NIO与原来的IO有同样的作用和目的,但是使用的方式完全不同,NIO支持面向缓冲区的、基于通道的IO操作。NIO将以更加高效的方式进行文件的读写操作。NIO可以理解为非阻塞IO,传统的IO的read和write只能阻塞执行,线程在读写IO期间不能干其他事情,比如调用socket.read()时,如果服务器一直没有数据传输过来,线程就一直阻塞,而NIO中可以配置socket为非阻塞模式。
- NIO相关类都被放在java.nio包及子包下,并且对原java.io包中的很多类进行改写。
- NIO有三大核心部分:Channel(通道),Buffer(缓冲区), Selector(选择器)
- Java NlO的非阻塞模式,使一个线程从某通道发送请求或者读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取,而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。非阻塞写也是如此,一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。
- 通俗理解:NIO是可以做到用一个线程来处理多个操作的。假设有1000个请求过来,根据实际情况,可以分配20或者80个线程来处理。不像之前的阻塞IO那样,非得分配1000个。
二、NIO 与 BIO的比较
- BIO以流的方式处理数据,而NIO以块的方式处理数据,块I/O的效率比流IO高很多
- BIO是阻塞的,NIO则是非阻塞的
- BlO基于字节流和字符流进行操作,而NIO基于Channel(通道)和Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。Selector(选择器)用于监听多个通道的事件(比如:连接请求,数据到达等),因此使用单个线程就可以监听多个客户端通道
NIO可以先将数据写入到缓冲区,然后再有缓冲区写入通道,因此可以做到同步非阻塞。
BIO则是面向的流,读写数据都是单向的。因此是同步阻塞。
三、NIO 三大核心原理示意图
NIO有三大核心部分: Channel(通道),Buffer(缓冲区),Selector(选择器)
Buffer(缓冲区)
缓冲区本质上是一块可以写入数据,然后可以从中读取数据的内存。这块内存被包装成NIO Buffer对象,并提供了一组方法,用来方便的访问该块内存。相比较直接对数组的操作,Buffer APl更加容易操作和管理。
Channel(通道)
Java NIO的通道类似流,但又有些不同:既可以从通道中读取数据,又可以写数据到通道。但流的(input或output)读写通常是单向的。通道可以非阻塞读取和写入通道,通道可以支持读取或写入缓冲区,也支持异步地读写。
Selector(选择器)
Selector是一个ava NIO组件,可以能够检查一个或多个NIO通道,并确定哪些通道已经准备好进行读取或写入。这样,一个单独的线程可以管理多个channel,从而管理多个网络连接,提高效率
- 每个channel都会对应一个 Buffer
- 一个线程对应Selector ,一个Selector对应多个channel(连接)程序
- 切换到哪个channel是由事件决定的
- Selector 会根据不同的事件,在各个通道上切换
- Buffer 就是一个内存块,底层是一个数组
- 数据的读取写入是通过 Buffer完成的,BlO中要么是输入流,或者是输出流,不能双向,但是NIO的Buffer是可以读也可以写。
- Java NIO系统的核心在于:通道(Channel)和缓冲区(Buffer)。通道表示打开到lO设备(例如:文件、套接字)的连接。若需要使用NIO系统,需要获取用于连接IO设备的通道以及用于容纳数据的缓冲区。然后操作缓冲区,对数据进行处理。简而言之,Channel负责传输,Buffer负责存取数据
四、NIO核心一:缓存区 (Buffer)
缓冲区(Buffer)一个用于特定基本数据类型的容器。由 java.nio 包定义的,所有缓冲区 都是 Buffer 抽象类的子类.。Java NIO 中的 Buffer 主要用于与 NIO 通道进行 交互,数据是从通道读入缓冲区,从缓冲区写入通道中的
Buffer 类及其子类:
Buffer就像一个数组,可以保存多个相同类型的数据。根据 数据类型不同 ,有以下 Buffer 常用子类:
- ByteBuffer
- CharBuffer
- ShortBuffer
- IntBuffer
- LongBuffer
- FloatBuffer
- DoubleBuffer
上述 Buffer 类他们都采用相似的方法进行管理数据,只是各自 管理的数据类型不同而已。都是通过如下方法获取一个 Buffer 对象:
static XxxBuffer allocate(int capacity) : 创建一个容量为capacity 的 XxxBuffer 对象
缓冲区的基本属性 Buffer 中的重要概念:
容量 (capacity) :作为一个内存块,Buffer具有一定的固定大小, 也称为"容量",缓冲区容量不能为负,并且创建后不能更改。
限制 (limit):表示缓冲区中可以操作数据的大小 (limit 后数据不能进行读写)。缓冲区的限制不能 为负,并且不能大于其容量。 写入模式,限制等于 buffer的容量。读取模式下,limit等于写入的数据量。
位置 (position):下一个要读取或写入的数据的索引。 缓冲区的位置不能为 负,并且不能大于其限制
标记 (mark)与重置 (reset):标记是一个索引, 通过 Buffer 中的 mark() 方法 指定 Buffer 中一个 特定的 position,之后可以通过调用 reset() 方法恢 复到这 个 position.
标记、位置、限制、容量遵守以下不变式: 0 <= mark <= position <= limit <= capacity
Buffer常见方法:
- Buffer clear() :清空缓冲区并返回对缓冲区的引用
- Buffer flip() :为 将缓冲区的界限设置为当前位置, 并将当前位置重置为 0
- int capacity() :返回 Buffer 的 capacity 大小
- boolean hasRemaining(): 判断缓冲区中是否还有元素
- int limit() :返回 Buffer 的界限(limit) 的位置
- Buffer limit(int n) 将设置缓冲区界限为 n, 并返回一个具有新 limit 的缓冲区对象
- Buffer mark(): 对缓冲区设置标记
- int position() :返回缓冲区的当前位置 position
- Buffer position(int n) :将设置缓冲区的当前位置为 n, 并返回修改后的 Buffer 对象
- int remaining() :返回 position 和 limit 之间的元素个数
- Buffer reset() :将位置 position 转到以前设置的mark 所在的位置
- Buffer rewind() :将位置设为为 0, 取消设置的 mark
缓冲区的数据操作 Buffer 所有子类提供了两个用于数据操作的方法:
- get() :读取单个字节
- get(byte[] dst):批量读取多个字节到 dst 中
- get(int index):读取指定索引位置的字节(不会移动 position)放到入数据到Buffer中
- put(byte b):将给定单个字节写入缓冲区的当前位置
- put(byte[] src):将 src 中的字节写入缓冲区的当前位置
- put(int index, byte b):将指定字节写入缓冲区的索引 位置(不会移动 position)
使用Buffer读写数据一般遵循以下四个步骤:
- 写入数据到Buffer
- 调用flip()方法,转换为读取模式
- 从Buffer中读取数据
- 调用buffer.clear()方法或者buffer.compact()方 法清除缓冲区
- package com.kgf.kgfjavalearning2021.io.nio;
- import org.junit.Test;
- import java.nio.ByteBuffer;
- /***
- * Buffer测试类
- */
- public class TestBuffer {
- @Test
- public void test1(){
- //1. 分配一个指定大小的缓冲区
- ByteBuffer buf = ByteBuffer.allocate(1024);
- System.out.println("-----------------allocate()----------------");
- System.out.println(buf.position());// 0: 表示当前的位置为0
- System.out.println(buf.limit());// 1024: 表示界限为1024,前1024个位置是允许我们读写的
- System.out.println(buf.capacity());//1024:表示容量大小为1024
- //2. 利用 put() 存入数据到缓冲区中
- System.out.println("-----------------put()----------------");
- String str = "itheima";
- buf.put(str.getBytes());
- System.out.println(buf.position());// 7表示下一个可以写入的位置是7,因为我们写入的字节是7个,从0开始已经写了7个,位置为8的position为7
- System.out.println(buf.limit());// 1024:表示界限为1024,前1024个位置是允许我们读写的
- System.out.println(buf.capacity());//1024:表示容量大小为1024
- //3. 切换读取数据模式
- System.out.println("-----------------flip()----------------");
- buf.flip();
- System.out.println(buf.position());// 0: 读取的起始位置为0
- System.out.println(buf.limit());// 7: 表示界限为7,前7个位置有数据可以读取
- System.out.println(buf.capacity());// 1024:表示容量大小为1024
- //4. 利用 get() 读取缓冲区中的数据
- System.out.println("-----------------get()----------------");
- byte[] dst = new byte[buf.limit()];//创建一个界限为limit大小的字节数组
- buf.get(dst);//批量将limit大小的字节写入到dst字节数组中
- System.out.println(new String(dst, 0, dst.length));//结果为itheima
- System.out.println(buf.position());//7: 读取的位置变为7,因为前面的7个字节数据已经全部读取出去,下一个可读取的位置为7,从0开始的
- System.out.println(buf.limit());//7: 可读取的界限大小为7
- System.out.println(buf.capacity());// 1024: 表示容量大小为1024
- //5. rewind() : 可重复读
- System.out.println("-----------------rewind()----------------");
- buf.rewind();// 将位置设为为 0,从头开始读取
- System.out.println(buf.position());// 0
- System.out.println(buf.limit());// 7
- System.out.println(buf.capacity());// 1024
- //6. clear() : 清空缓冲区. 但是缓冲区中的数据依然存在,但是处于“被遗忘”状态
- System.out.println("-----------------clear()----------------");
- buf.clear();
- System.out.println(buf.position());// 0
- System.out.println(buf.limit());// 1024
- System.out.println(buf.capacity());// 1024
- System.out.println((char)buf.get());//i
- }
- @Test
- public void test2(){
- String str = "itheima";
- ByteBuffer buf = ByteBuffer.allocate(1024);
- buf.put(str.getBytes());// 将str写入到buf缓冲区中
- buf.flip();//转换为读模式
- byte[] dst = new byte[buf.limit()];//定义一个字节数组
- buf.get(dst, 0, 2);//将前2个字节批量写入到dst字节数组中
- System.out.println(new String(dst, 0, 2));//打印结果为it
- System.out.println(buf.position());//当前下一个读取的位置为2
- //mark() : 标记
- buf.mark();
- buf.get(dst, 2, 2);//从第3个位置开始将2个字节批量写入到dst字节数组中
- System.out.println(new String(dst, 2, 2));//打印结果为he
- System.out.println(buf.position());// 当前下一个读取的位置为4
- //reset() : 恢复到 mark 的位置
- buf.reset();
- System.out.println(buf.position());// 2
- //判断缓冲区中是否还有剩余数据
- if(buf.hasRemaining()){
- //获取缓冲区中可以操作的数量
- System.out.println(buf.remaining());// 5: 返回 position 和 limit 之间的元素个数
- }
- }
- @Test
- public void test3(){
- //分配直接缓冲区
- ByteBuffer buf = ByteBuffer.allocateDirect(1024);
- System.out.println(buf.isDirect());
- }
- }
直接与非直接缓冲区:
byte byffer可以是两种类型,一种是基于直接内存(也就是非堆内存);另一种是非直接内存(也就是堆内存)。对于直接内存来说,JVM将会在IO操作上具有更高的性能,因为它
直接作用于本地系统的IO操作。而非直接内存,也就是堆内存中的数据,如果要作IO操作,会先从本进程内存复制到直接内存,再利用本地IO处理。从数据流的角度,非直接内存是下面这样的作用链:
本地IO-->直接内存-->非直接内存-->直接内存-->本地IO
而直接内存是:
本地IO-->直接内存-->本地IO
很明显,在做IO处理时,比如网络发送大量数据时,直接内存会具有更高的效率。直接内存使用allocateDirect创建,但是它比申请普通的堆内存需要耗费更高的性能。不过,这部分的数据是在JVM之外的,因此它不会占用应用的内存。所以呢,当你有很大的数据要缓存,并且它的生命周期又很长,那么就比较适合使用直接内存。只是一般来说,如果不是能带来很明显的性能提升,还是推荐直接使用堆内存。字节缓冲区是直接缓冲区还是非直接缓冲区可通过调用其 isDirect() 方法来确定。
使用场景
- 有很大的数据需要存储,它的生命周期又很长
- 适合频繁的IO操作,比如网络并发场景
五、NIO核心二:通道(Channel)
1、通道Channe概述
通道(Channel):由 java.nio.channels 包定义 的。Channel 表示 IO 源与目标打开的连接。 Channel 类似于传统的“流”。只不过 Channel 本身不能直接访问数据,Channel 只能与 Buffer 进行交互。
2、NIO 的通道类似于流,但有些区别如下:
通道可以同时进行读写,而流只能读或者只能写
通道可以实现异步读写数据
通道可以从缓冲读数据,也可以写数据到缓冲:
3、BIO 中的 stream 是单向的,例如 FileInputStream 对象只能进行读取数据的操作,而 NIO 中的通道(Channel)是双向的,可以读操作,也可以写操作。
4、Channel 在 NIO 中是一个接口
public interface Channel extends Closeable{}
5、常用的Channel实现类
- FileChannel:用于读取、写入、映射和操作文件的通道。
- DatagramChannel:通过 UDP 读写网络中的数据通道。
- SocketChannel:通过 TCP 读写网络中的数据。
- ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。 【ServerSocketChanne 类似 ServerSocket , SocketChannel 类似 Socket】
6、FileChannel 类
获取通道的一种方式是对支持通道的对象调用getChannel() 方法。支持通道的类如下
- FileInputStream
- FileOutputStream
- RandomAccessFile
- DatagramSocket
- Socket
- ServerSocket
- 获取通道的其他方式是使用 Files 类的静态方法 newByteChannel() 获取字节通道。或者通过通道的静态方法 open() 打开并返回指定通道
7、FileChannel常用方法
- int read(ByteBuffer dst) :从Channel 到 中读取数据到 ByteBuffer
- long read(ByteBuffer[] dsts) : 将Channel中的数据“分散”到 ByteBuffer[]
- int write(ByteBuffer src) :将 ByteBuffer中的数据写入到 Channel
- long write(ByteBuffer[] srcs) :将 ByteBuffer[] 到 中的数据“聚集”到 Channel
- long position() :返回此通道的文件位置
- FileChannel position(long p) :设置此通道的文件位置
- long size() :返回此通道的文件的当前大小
- FileChannel truncate(long s) :将此通道的文件截取为给定大小
- void force(boolean metaData) :强制将所有对此通道的文件更新写入到存储设备中
8、案例1-本地文件写数据
- package com.kgf.kgfjavalearning2021.io.nio;
- import org.junit.Test;
- import java.io.FileOutputStream;
- import java.nio.ByteBuffer;
- import java.nio.channels.FileChannel;
- /***
- * 需求:使用前面学习后的 ByteBuffer(缓冲)和 FileChannel(通道), 将数据写入到 data.txt 中.
- */
- public class ChannelTest {
- @Test
- public void write(){
- try {
- // 1、字节输出流通向目标文件
- FileOutputStream fos = new FileOutputStream("E:\\test\\data01.txt");
- // 2、得到字节输出流对应的通道Channel
- FileChannel channel = fos.getChannel();
- // 3、分配缓冲区
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- for (int i = 0; i < 10; i++) {
- buffer.clear();//清空缓冲区
- buffer.put(("hello,使用Buffer和channel实现写数据到文件中"+i+"\r\n").getBytes());
- // 4、把缓冲区切换成写出模式
- buffer.flip();
- channel.write(buffer);//将缓冲区的数据写入到文件通道
- }
- channel.close();
- System.out.println("写数据到文件中!");
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
- }
9、案例2-本地文件读数据
- /***
- * 设置两个缓冲区,一大一小,大的缓冲区为每次读取的量,小的缓冲区存放每行的数据(确保大小可存放文本中最长的那行)。读取的时候判断是不是换行符13,是的话则返回一行数据,不是的话继续读取,直到读完文件。
- * @throws Exception
- */
- @Test
- public void read() throws Exception {
- // 1、定义一个文件字节输入流与源文件接通
- FileInputStream is = new FileInputStream("E:\\test\\data01.txt");
- // 2、需要得到文件字节输入流的文件通道
- FileChannel channel = is.getChannel();
- // 3、定义一个缓冲区
- int bufferSize = 1024 * 1024; // 每一块的大小
- ByteBuffer buffer = ByteBuffer.allocate(bufferSize);
- ByteBuffer bb = ByteBuffer.allocate(1024);
- // 4、读取数据到缓冲区
- int bytesRead = channel.read(buffer);
- while (bytesRead != -1) {
- buffer.flip();// 切换模式,写->读
- while (buffer.hasRemaining()) {//返回 position 和 limit 之间的元素个数
- byte b = buffer.get();
- if (b == 10 || b == 13) { // 换行或回车
- bb.flip();
- // 这里就是一个行
- final String line = Charset.forName("utf-8").decode(bb).toString();
- System.out.println(line);// 解码已经读到的一行所对应的字节
- bb.clear();
- } else {
- if (bb.hasRemaining())
- bb.put(b);
- else { // 空间不够扩容
- bb = reAllocate(bb);
- bb.put(b);
- }
- }
- }
- buffer.clear();// 清空,position位置为0,limit=capacity
- // 继续往buffer中写
- bytesRead = channel.read(buffer);
- }
- channel.close();
- }
10、案例3-使用Buffer完成文件复制
- /**
- * 使用 FileChannel(通道) ,完成文件的拷贝。
- * @throws Exception
- */
- @Test
- public void copy() throws Exception {
- // 源文件
- File srcFile = new File("E:\\test\\Aurora-4k.jpg");
- File destFile = new File("E:\\test\\Aurora-4k-new.jpg");
- // 得到一个字节字节输入流
- FileInputStream fis = new FileInputStream(srcFile);
- // 得到一个字节输出流
- FileOutputStream fos = new FileOutputStream(destFile);
- // 得到的是文件通道
- FileChannel isChannel = fis.getChannel();
- FileChannel osChannel = fos.getChannel();
- // 分配缓冲区
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- while(isChannel.read(buffer)>0){
- // 已经读取了数据 ,把缓冲区的模式切换成可读模式
- buffer.flip();
- // 把数据写出到
- osChannel.write(buffer);//将buffer缓冲区中的数据写入到osChannel中
- // 必须先清空缓冲然后再写入数据到缓冲区
- buffer.clear();
- }
- isChannel.close();
- osChannel.close();
- System.out.println("复制完成!");
- }
11、案例4-transferFrom()
从目标通道中去复制原通道数据
- @Test
- public void test02() throws Exception {
- // 1、字节输入管道
- FileInputStream is = new FileInputStream("E:\\test\\Aurora-4k.jpg");
- FileChannel isChannel = is.getChannel();
- // 2、字节输出流管道
- FileOutputStream fos = new FileOutputStream("E:\\test\\Aurora-4knew3.jpg");
- FileChannel osChannel = fos.getChannel();
- // 3、复制
- osChannel.transferFrom(isChannel,isChannel.position(),isChannel.size());
- isChannel.close();
- osChannel.close();
- }
12、案例5-transferTo()
把原通道数据复制到目标通道
- @Test
- public void test03() throws Exception {
- // 1、字节输入管道
- FileInputStream is = new FileInputStream("E:\\test\\Aurora-4k.jpg");
- FileChannel isChannel = is.getChannel();
- // 2、字节输出流管道
- FileOutputStream fos = new FileOutputStream("E:\\test\\Aurora-4knew4.jpg");
- FileChannel osChannel = fos.getChannel();
- // 3、复制
- isChannel.transferTo(isChannel.position() , isChannel.size() , osChannel);
- isChannel.close();
- osChannel.close();
- }
13、案例6-分散 (Scatter) 和聚集 (Gather)
- 分散读取(Scatter ):是指把Channel通道的数据读入到 多个缓冲区中去
- 聚集写入(Gathering )是指将多个 Buffer 中的数 据“聚集”到 Channel。
- //分散和聚集
- @Test
- public void test() throws IOException{
- RandomAccessFile raf1 = new RandomAccessFile("1.txt", "rw");
- //1. 获取通道
- FileChannel channel1 = raf1.getChannel();
- //2. 分配指定大小的缓冲区
- ByteBuffer buf1 = ByteBuffer.allocate(100);
- ByteBuffer buf2 = ByteBuffer.allocate(1024);
- //3. 分散读取
- ByteBuffer[] bufs = {buf1, buf2};
- channel1.read(bufs);
- for (ByteBuffer byteBuffer : bufs) {
- byteBuffer.flip();
- }
- System.out.println(new String(bufs[0].array(), 0, bufs[0].limit()));
- System.out.println("-----------------");
- System.out.println(new String(bufs[1].array(), 0, bufs[1].limit()));
- //4. 聚集写入
- RandomAccessFile raf2 = new RandomAccessFile("2.txt", "rw");
- FileChannel channel2 = raf2.getChannel();
- channel2.write(bufs);
- }
六、NIO核心三:选择器(Selector)
1、选择器(Selector)概述
选择器(Selector)是SelectableChannle对象的多路复用器,Selector可以同时监控多个SelectableChannel的IO状况,也就是说,利用Selector可使一个单独的线程管理多个Channel。Selector是非阻塞IO的核心。
- Java 的 NIO,用非阻塞的 IO 方式。可以用一个线程,处理多个的客户端连接,就会使用到 Selector(选择器)
- Selector 能够检测多个注册的通道上是否有事件发生(注意:多个 Channel 以事件的方式可以注册到同一个(Selector),如果有事件发生,便获取事件然后针对每个事件进行相应的处理。这样就可以只用一个单线程去管
- 理多个通道,也就是管理多个连接和请求。
- 只有在连接/通道真正有读写事件发生时,才会进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护多个线程
- 避免了多线程之间的上下文切换导致的开销
2、选择器的应用
创建 Selector :通过调用 Selector.open() 方法创建一个 Selector。
Selector selector = Selector.open();
向选择器注册通道:SelectableChannel.register(Selector sel, int ops)
- //1. 获取通道
- ServerSocketChannel ssChannel = ServerSocketChannel.open();
- //2. 切换非阻塞模式
- ssChannel.configureBlocking(false);
- //3. 绑定连接
- ssChannel.bind(new InetSocketAddress(9898));
- //4. 获取选择器
- Selector selector = Selector.open();
- //5. 将通道注册到选择器上, 并且指定“监听接收事件”
- ssChannel.register(selector, SelectionKey.OP_ACCEPT);
当调用 register(Selector sel, int ops) 将通道注册选择器时,选择器对通道的监听事件,需要通过第二个参数 ops 指定。可以监听的事件类型(用 可使用 SelectionKey 的四个常量 表示):
- 读 : SelectionKey.OP_READ (1)
- 写 : SelectionKey.OP_WRITE (4)
- 连接 : SelectionKey.OP_CONNECT (8)
- 接收 : SelectionKey.OP_ACCEPT (16)
若注册时不止监听一个事件,则可以使用“位或”操作符连接。
int interestSet = SelectionKey.OP_READ|SelectionKey.OP_WRITE
3、NIO非阻塞式网络通信原理分析
3.1、Selector 示意图和特点说明
Selector可以实现: 一个 I/O 线程可以并发处理 N 个客户端连接和读写操作,这从根本上解决了传统同步阻塞 I/O 一连接一线程模型,架构的性能、弹性伸缩能力和可靠性都得到了极大的提升。
3.2、服务端流程
1)、获取通道。当客户端连接服务端时,服务端会通过 ServerSocketChannel 得到 SocketChannel:
ServerSocketChannel ssChannel = ServerSocketChannel.open();
2)、切换非阻塞模式
ssChannel.configureBlocking(false);
3)、绑定连接
ssChannel.bind(new InetSocketAddress(8888));
4)、获取选择器
Selector selector = Selector.open();
5)、将通道注册到选择器上, 并且指定“监听接收事件”
ssChannel.register(selector, SelectionKey.OP_ACCEPT);
6)、轮询式的获取选择器上已经“准备就绪”的事件
- while (selector.select() > 0){
- System.out.println("开启事件处理");
- //7.获取选择器中所有注册的通道中已准备好的事件
- Iterator<SelectionKey> it = selector.selectedKeys().iterator();
- //8.开始遍历事件
- while (it.hasNext()){
- SelectionKey selectionKey = it.next();
- System.out.println("--->"+selectionKey);
- //9.判断这个事件具体是啥
- if (selectionKey.isAcceptable()){
- //10.获取当前接入事件的客户端通道
- SocketChannel socketChannel = serverSocketChannel.accept();
- //11.切换成非阻塞模式
- socketChannel.configureBlocking(false);
- //12.将本客户端注册到选择器
- socketChannel.register(selector,SelectionKey.OP_READ);
- }else if (selectionKey.isReadable()){
- //13.获取当前选择器上的读
- SocketChannel socketChannel = (SocketChannel) selectionKey.channel();
- //14.读取
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- int len;
- while ((len = socketChannel.read(buffer)) > 0){
- buffer.flip();
- System.out.println(new String(buffer.array(),0,len));
- //清除之前的数据(覆盖写入)
- buffer.clear();
- }
- }
- //15.处理完毕后,移除当前事件
- it.remove();
- }
- }
3.3、客户端流程
1)、获取通道
SocketChannel sChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1", 8888));
2)、切换非阻塞模式
sChannel.configureBlocking(false);
3)、分配指定大小的缓冲区
ByteBuffer buffer = ByteBuffer.allocate(1024);
4)、发送数据给绑定的服务端
- Scanner scan = new Scanner(System.in);
- while(scan.hasNext()){
- String str = scan.nextLine();
- buf.put((new SimpleDateFormat("yyyy/MM/dd HH:mm:ss").format(System.currentTimeMillis())
- + "\n" + str).getBytes());
- buf.flip();
- sChannel.write(buf);
- buf.clear();
- }
- //关闭通道
- sChannel.close();
4、NIO非阻塞式网络通信入门案例
需求:服务端接收客户端的连接请求,并接收多个客户端发送过来的事件。
Server端代码实现:
- package nio.ss;
- import java.io.IOException;
- import java.net.InetSocketAddress;
- import java.nio.ByteBuffer;
- import java.nio.channels.*;
- import java.util.Iterator;
- public class Server {
- public static void main(String[] args) {
- try {
- //1.获取管道
- ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
- //2.设置非阻塞模式
- serverSocketChannel.configureBlocking(false);
- //3.绑定端口
- serverSocketChannel.bind(new InetSocketAddress(8888));
- //4.获取选择器
- Selector selector = Selector.open();
- //5.将通道注册到选择器上,并且开始指定监听的接收事件
- serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
- //6.轮询已经就绪的事件
- while (selector.select() > 0){
- System.out.println("开启事件处理");
- //7.获取选择器中所有注册的通道中已准备好的事件
- Iterator<SelectionKey> it = selector.selectedKeys().iterator();
- //8.开始遍历事件
- while (it.hasNext()){
- SelectionKey selectionKey = it.next();
- System.out.println("--->"+selectionKey);
- //9.判断这个事件具体是啥
- if (selectionKey.isAcceptable()){
- //10.获取当前接入事件的客户端通道
- SocketChannel socketChannel = serverSocketChannel.accept();
- //11.切换成非阻塞模式
- socketChannel.configureBlocking(false);
- //12.将本客户端注册到选择器
- socketChannel.register(selector,SelectionKey.OP_READ);
- }else if (selectionKey.isReadable()){
- //13.获取当前选择器上的读
- SocketChannel socketChannel = (SocketChannel) selectionKey.channel();
- //14.读取
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- int len;
- while ((len = socketChannel.read(buffer)) > 0){
- buffer.flip();
- System.out.println(new String(buffer.array(),0,len));
- //清除之前的数据(覆盖写入)
- buffer.clear();
- }
- }
- //15.处理完毕后,移除当前事件
- it.remove();
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- }
Client端代码实现:
- package nio.ss;
- import java.io.IOException;
- import java.net.InetSocketAddress;
- import java.nio.ByteBuffer;
- import java.nio.channels.SocketChannel;
- import java.util.Scanner;
- public class Client {
- public static void main(String[] args) {
- try {
- SocketChannel socketChannel = SocketChannel.open(new InetSocketAddress("127.0.0.1",8888));
- socketChannel.configureBlocking(false);
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- Scanner scanner = new Scanner(System.in);
- while (true){
- System.out.print("请输入:");
- String msg = scanner.nextLine();
- buffer.put(msg.getBytes());
- buffer.flip();
- socketChannel.write(buffer);
- buffer.clear();
- }
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- }
5、NIO 网络编程应用实例-群聊系统
需求:进一步理解 NIO 非阻塞网络编程机制,实现多人群聊
- 编写一个 NIO 群聊系统,实现客户端与客户端的通信需求(非阻塞)
- 服务器端:可以监测用户上线,离线,并实现消息转发功能
- 客户端:通过 channel 可以无阻塞发送消息给其它所有客户端用户,同时可以接受其它客户端用户通过服务端转发来的消息
服务端代码:
- package nio.chat;
- import java.io.IOException;
- import java.net.InetSocketAddress;
- import java.nio.ByteBuffer;
- import java.nio.channels.*;
- import java.util.Iterator;
- /**
- *
- */
- public class Server {
- //定义属性
- private Selector selector;
- private ServerSocketChannel ssChannel;
- private static final int PORT = 9999;
- //构造器
- //初始化工作
- public Server() {
- try {
- // 1、获取通道
- ssChannel = ServerSocketChannel.open();
- // 2、切换为非阻塞模式
- ssChannel.configureBlocking(false);
- // 3、绑定连接的端口
- ssChannel.bind(new InetSocketAddress(PORT));
- // 4、获取选择器Selector
- selector = Selector.open();
- // 5、将通道都注册到选择器上去,并且开始指定监听接收事件
- ssChannel.register(selector , SelectionKey.OP_ACCEPT);
- }catch (IOException e) {
- e.printStackTrace();
- }
- }
- //监听
- public void listen() {
- System.out.println("监听线程:" + Thread.currentThread().getName());
- try {
- while (selector.select() > 0){
- // 7、获取选择器中的所有注册的通道中已经就绪好的事件
- Iterator<SelectionKey> it = selector.selectedKeys().iterator();
- // 8、开始遍历这些准备好的事件
- while (it.hasNext()){
- // 提取当前这个事件
- SelectionKey sk = it.next();
- // 9、判断这个事件具体是什么
- if(sk.isAcceptable()){
- // 10、直接获取当前接入的客户端通道
- SocketChannel schannel = ssChannel.accept();
- // 11 、切换成非阻塞模式
- schannel.configureBlocking(false);
- // 12、将本客户端通道注册到选择器
- System.out.println(schannel.getRemoteAddress() + " 上线 ");
- schannel.register(selector , SelectionKey.OP_READ);
- //提示
- }else if(sk.isReadable()){
- //处理读 (专门写方法..)
- readData(sk);
- }
- it.remove(); // 处理完毕之后需要移除当前事件
- }
- }
- }catch (Exception e) {
- e.printStackTrace();
- }finally {
- //发生异常处理....
- }
- }
- //读取客户端消息
- private void readData(SelectionKey key) {
- //获取关联的channel
- SocketChannel channel = null;
- try {
- //得到channel
- channel = (SocketChannel) key.channel();
- //创建buffer
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- int count = channel.read(buffer);
- //根据count的值做处理
- if(count > 0) {
- //把缓存区的数据转成字符串
- String msg = new String(buffer.array());
- //输出该消息
- System.out.println("来自客户端---> " + msg);
- //向其它的客户端转发消息(去掉自己), 专门写一个方法来处理
- sendInfoToOtherClients(msg, channel);
- }
- }catch (IOException e) {
- try {
- System.out.println(channel.getRemoteAddress() + " 离线了..");
- e.printStackTrace();
- //取消注册
- key.cancel();
- //关闭通道
- channel.close();
- }catch (IOException e2) {
- e2.printStackTrace();;
- }
- }
- }
- //转发消息给其它客户(通道)
- private void sendInfoToOtherClients(String msg, SocketChannel self ) throws IOException{
- System.out.println("服务器转发消息中...");
- System.out.println("服务器转发数据给客户端线程: " + Thread.currentThread().getName());
- //遍历 所有注册到selector 上的 SocketChannel,并排除 self
- for(SelectionKey key: selector.keys()) {
- //通过 key 取出对应的 SocketChannel
- Channel targetChannel = key.channel();
- //排除自己
- if(targetChannel instanceof SocketChannel && targetChannel != self) {
- //转型
- SocketChannel dest = (SocketChannel)targetChannel;
- //将msg 存储到buffer
- ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
- //将buffer 的数据写入 通道
- dest.write(buffer);
- }
- }
- }
- public static void main(String[] args) {
- //创建服务器对象
- Server groupChatServer = new Server();
- groupChatServer.listen();
- }
- }
客户端代码:
- package nio.chat;
- import java.io.IOException;
- import java.net.InetSocketAddress;
- import java.nio.ByteBuffer;
- import java.nio.channels.SelectionKey;
- import java.nio.channels.Selector;
- import java.nio.channels.SocketChannel;
- import java.util.Iterator;
- import java.util.Scanner;
- public class Client {
- //定义相关的属性
- private final String HOST = "127.0.0.1"; // 服务器的ip
- private final int PORT = 9999; //服务器端口
- private Selector selector;
- private SocketChannel socketChannel;
- private String username;
- //构造器, 完成初始化工作
- public Client() throws IOException {
- selector = Selector.open();
- //连接服务器
- socketChannel = socketChannel.open(new InetSocketAddress("127.0.0.1", PORT));
- //设置非阻塞
- socketChannel.configureBlocking(false);
- //将channel 注册到selector
- socketChannel.register(selector, SelectionKey.OP_READ);
- //得到username
- username = socketChannel.getLocalAddress().toString().substring(1);
- System.out.println(username + " is ok...");
- }
- //向服务器发送消息
- public void sendInfo(String info) {
- info = username + " 说:" + info;
- try {
- socketChannel.write(ByteBuffer.wrap(info.getBytes()));
- }catch (IOException e) {
- e.printStackTrace();
- }
- }
- //读取从服务器端回复的消息
- public void readInfo() {
- try {
- int readChannels = selector.select();
- if(readChannels > 0) {//有可以用的通道
- Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();
- while (iterator.hasNext()) {
- SelectionKey key = iterator.next();
- if(key.isReadable()) {
- //得到相关的通道
- SocketChannel sc = (SocketChannel) key.channel();
- //得到一个Buffer
- ByteBuffer buffer = ByteBuffer.allocate(1024);
- //读取
- sc.read(buffer);
- //把读到的缓冲区的数据转成字符串
- String msg = new String(buffer.array());
- System.out.println(msg.trim());
- }
- }
- iterator.remove(); //删除当前的selectionKey, 防止重复操作
- } else {
- //System.out.println("没有可以用的通道...");
- }
- }catch (Exception e) {
- e.printStackTrace();
- }
- }
- public static void main(String[] args) throws Exception {
- //启动我们客户端
- Client chatClient = new Client();
- //启动一个线程, 每个3秒,读取从服务器发送数据
- new Thread() {
- public void run() {
- while (true) {
- chatClient.readInfo();
- try {
- Thread.currentThread().sleep(3000);
- }catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
- }.start();
- //发送数据给服务器端
- Scanner scanner = new Scanner(System.in);
- while (scanner.hasNextLine()) {
- String s = scanner.nextLine();
- chatClient.sendInfo(s);
- }
- }
- }
七、AIO 深入剖析
Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。
- AIO:异步非阻塞,基于NIO的,可以称之为NIO2.0
- BIO NIO AIO
- Socket SocketChannel AsynchronousSocketChannel
- ServerSocket ServerSocketChannel AsynchronousServerSocketChannel
与NIO不同,当进行读写操作时,只须直接调用API的read或write方法即可, 这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序
即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。在JDK1.7中,这部分内容被称作NIO.2,主要在Java.nio.channels包下增加了下面四个异步通道:
- AsynchronousSocketChannel
- AsynchronousServerSocketChannel
- AsynchronousFileChannel
- AsynchronousDatagramChannel
八、总结
标签:java,NIO,简介,System,println,ByteBuffer,缓冲区,通道,out From: https://www.cnblogs.com/gaoyanbing/p/17287299.htmlBIO、NIO、AIO:
- Java BIO : 同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善。
- Java NIO : 同步非阻塞,服务器实现模式为一个请求一个线程,即客户端发送的连接请求都会注册到多路复用器上,多路复用器轮询到连接有I/O请求时才启动一个线程进行处理。
- Java AIO(NIO.2) : 异步非阻塞,服务器实现模式为一个有效请求一个线程,客户端的I/O请求都是由OS先完成了再通知服务器应用去启动线程进行处理。
BIO、NIO、AIO适用场景分析:
- BIO方式适用于连接数目比较小且固定的架构,这种方式对服务器资源要求比较高,并发局限于应用中,JDK1.4以前的唯一选择,但程序直观简单易理解。
- NIO方式适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,并发局限于应用中,编程比较复杂,JDK1.4开始支持。
- AIO方式使用于连接数目多且连接比较长(重操作)的架构,比如相册服务器,充分调用OS参与并发操作,编程比较复杂,JDK7开始支持。Netty!