首页 > 编程语言 >图神经网络-图游走算法核心代码DeepWalk实现

图神经网络-图游走算法核心代码DeepWalk实现

时间:2023-03-15 20:31:53浏览次数:54  
标签:DeepWalk graph walk 神经网络 np 游走 deepwalk nodes size

本文主要涉及图游走算法DeepWalk的代码实现。

1. DeepWalk采样算法

对于给定的节点,DeepWalk会等概率的选取下一个相邻节点加入路径,直至达到最大路径长度,或者没有下一个节点可选。Graph类的实现可参考 https://github.com/PaddlePaddle/PGL/blob/main/pgl/graph.py,DeepWalk的代码详见 ./deepwalk.py

图神经网络-图游走算法核心代码DeepWalk实现_算法

安装依赖

# !pip install paddlepaddle==1.8.5
!pip install pgl

构建一张图,其中包含了10个节点以及14条边

图神经网络-图游走算法核心代码DeepWalk实现_算法_02

请实现Graph类的random_walk函数

%%writefile userdef_graph.py
from pgl.graph import Graph


import numpy as np
from pgl.utils.logger import log
class UserDefGraph(Graph):
    def random_walk(self, nodes, walk_len):
        """
        输入:nodes - 当前节点id list (batch_size,)
             walk_len - 最大路径长度 int
        输出:以当前节点为起点得到的路径 list (batch_size, walk_len)


        用到的函数
        1. self.successor(nodes)
           描述:获取当前节点的下一个相邻节点id列表
           输入:nodes - list (batch_size,)
           输出:succ_nodes - list of list ((num_successors_i,) for i in range(batch_size))
        2. self.outdegree(nodes)
           描述:获取当前节点的出度
           输入:nodes - list (batch_size,)
           输出:out_degrees - list (batch_size,)
        """
        walks = [[node] for node in nodes]
        #log.info(walks )
        walks_ids = np.arange(0, len(nodes))
        cur_nodes = np.array(nodes)
        for l in range(walk_len):
            """选取有下一个节点的路径继续采样,否则结束"""
            outdegree = self.outdegree(cur_nodes)
            walk_mask = (outdegree != 0)
          
            if not np.any(walk_mask):
               break
            cur_nodes = cur_nodes[walk_mask]
            walks_ids = walks_ids[walk_mask]
            outdegree = outdegree[walk_mask]


            ######################################
            # 请在此补充代码采样出下一个节点
            succ_nodes = self.successor(cur_nodes)
             
            sample_index = np.floor(
                np.random.rand(outdegree.shape[0]) * outdegree).astype("int64")


            next_nodes = []
            for s, ind, walk_id in zip(succ_nodes, sample_index, walks_ids):
                walks[walk_id].append(s[ind])
                next_nodes.append(s[ind])
               
            ######################################
            cur_nodes = np.array(next_nodes)
        log.info(walks )
        return walks

PGL官网的random_walk源代码:

    def random_walk(self, nodes, max_depth):
        """Implement of random walk.
        This function get random walks path for given nodes and depth.
        Args:
            nodes: Walk starting from nodes
            max_depth: Max walking depth
        Return:
            A list of walks.
        """
        walk = []
        # init
        for node in nodes:
            walk.append([node])


        cur_walk_ids = np.arange(0, len(nodes))
        cur_nodes = np.array(nodes)
        for l in range(max_depth):
            # select the walks not end
            outdegree = self.outdegree(cur_nodes)
            mask = (outdegree != 0)
            if np.any(mask):
                cur_walk_ids = cur_walk_ids[mask]
                cur_nodes = cur_nodes[mask]
                outdegree = outdegree[mask]
            else:
                # stop when all nodes have no successor
                break
            succ = self.successor(cur_nodes)
            sample_index = np.floor(
                np.random.rand(outdegree.shape[0]) * outdegree).astype("int64")


            nxt_cur_nodes = []
            for s, ind, walk_id in zip(succ, sample_index, cur_walk_ids):
                walk[walk_id].append(s[ind])
                nxt_cur_nodes.append(s[ind])
            cur_nodes = np.array(nxt_cur_nodes)
        return walk

运行脚本:

!python my_deepwalk.py --use_my_random_walk --epoch 5 # 用自己实现的random walk训练DeepWalk模型,可在 ./tmp/deepwalk/walks/ 中查看构造的节点路径
#!python link_predict.py --ckpt_path ./tmp/deepwalk/paddle_model --epoch 100 #测试

运行结果:

[INFO] 2021-02-13 17:27:03,835 [my_deepwalk.py:  302]:  Namespace(batch_size=512, epoch=5, hidden_size=128, neg_num=20, processes=2, save_path='./tmp/deepwalk', use_my_random_walk=True, walk_len=5, win_size=5)
[INFO] 2021-02-13 17:27:04,651 [my_deepwalk.py:  219]:  Start random walk on disk...
[INFO] 2021-02-13 17:27:04,675 [userdef_graph.py:   51]:  [[9, 7, 2, 0], [8, 0], [6, 5, 0], [0], [2, 1], [3, 1], [1], [5, 0], [7, 3, 1], [4, 0]]
[INFO] 2021-02-13 17:27:04,675 [userdef_graph.py:   51]:  [[4, 0], [0], [2, 1], [7, 1], [5, 0], [8, 0], [1], [6, 5, 0], [9, 7, 3, 1], [3, 1]]
[INFO] 2021-02-13 17:27:04,677 [userdef_graph.py:   51]:  [[6, 0], [7, 3, 1], [5, 0], [4, 0], [3, 1], [8, 0], [2, 0], [1], [0], [9, 7, 0]]
[INFO] 2021-02-13 17:27:04,677 [userdef_graph.py:   51]:  [[9, 7, 1], [5, 0], [3, 1], [7, 2, 1], [2, 1], [0], [8, 0], [4, 0], [1], [6, 5, 0]]
[INFO] 2021-02-13 17:27:04,678 [userdef_graph.py:   51]:  [[9, 7, 0], [8, 0], [0], [4, 0], [1], [2, 1], [5, 0], [3, 1], [7, 3, 1], [6, 4, 0]]
[INFO] 2021-02-13 17:27:04,679 [my_deepwalk.py:  230]:  Random walk on disk Done.
2021-02-13 17:27:04,680-WARNING: paddle.fluid.layers.py_reader() may be deprecated in the near future. Please use paddle.fluid.io.DataLoader.from_generator() instead.
[INFO] 2021-02-13 17:27:04,730 [my_deepwalk.py:  278]:  Step 1 DeepWalk Loss: 0.718020  0.020003 s/step.

附录:my_deepwalk.py

"""DeepWalk代码文件"""


# 导入需要的依赖包
import argparse
import time
import os
import io
import math
from multiprocessing import Pool
import glob


import numpy as np


from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import paddle.fluid.layers as l




def deepwalk_model(graph, hidden_size=16, neg_num=5):
    """
    该函数为Skip Gram模型部分,即课堂所讲的 Skip Gram + 负采样
    函数参数含义:
        graph: 图
        hidden_size: 节点维度
        neg_num: 负采样数目
    """


    # 创建在Python端提供数据的reader
    pyreader = l.py_reader(
        capacity=70,
        shapes=[[-1, 1, 1], [-1, 1, 1], [-1, neg_num, 1]],
        dtypes=['int64', 'int64', 'int64'],
        lod_levels=[0, 0, 0],
        name='train',
        use_double_buffer=True)


    # 创建参数的初始化器
    embed_init = fluid.initializer.UniformInitializer(low=-1.0, high=1.0)
    weight_init = fluid.initializer.TruncatedNormal(scale=1.0 /
                                                    math.sqrt(hidden_size))


    # 从给定的reader中读取数据,包括中心节点编号,对应的正样本节点编号和负样本节点编号
    src, pos, negs = l.read_file(pyreader)


    # 从Embedding矩阵中,根据input参数的节点id信息,查询对应节点的embedding表示
    embed_src = l.embedding(
        input=src,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='content', initializer=embed_init))


    weight_pos = l.embedding(
        input=pos,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='weight', initializer=weight_init))
    weight_negs = l.embedding(
        input=negs,
        size=[graph.num_nodes, hidden_size],
        param_attr=fluid.ParamAttr(
            name='weight', initializer=weight_init))


    ### 负采样计算部分——Multi Sigmoids
    # 分别计算正样本和负样本的 logits
    pos_logits = l.matmul(
        embed_src, weight_pos, transpose_y=True)  # [batch_size, 1, 1]
    neg_logits = l.matmul(
        embed_src, weight_negs, transpose_y=True)  # [batch_size, 1, neg_num]


    # 设置正样本标签,并计算正样本loss
    ones_label = pos_logits * 0. + 1.
    ones_label.stop_gradient = True
    pos_loss = l.sigmoid_cross_entropy_with_logits(pos_logits, ones_label)


    # 设置负样本标签,并计算负样本loss
    zeros_label = neg_logits * 0.
    zeros_label.stop_gradient = True
    neg_loss = l.sigmoid_cross_entropy_with_logits(neg_logits, zeros_label)


    # 总的Loss计算为正样本与负样本loss之和
    loss = (l.reduce_mean(pos_loss) + l.reduce_mean(neg_loss)) / 2


    return pyreader, loss




def gen_pair(walks, left_win_size=2, right_win_size=2):
    """
    该函数用于生成正样本对
    函数参数含义:
        walks: 多条节点游走序列
        left_win_size: 左窗口值大小
        right_win_size: 右窗口值大小
    """
    src = []
    pos = []
    for walk in walks:
        for left_offset in range(1, left_win_size + 1):
            src.extend(walk[left_offset:])
            pos.extend(walk[:-left_offset])
        for right_offset in range(1, right_win_size + 1):
            src.extend(walk[:-right_offset])
            pos.extend(walk[right_offset:])
    src, pos = np.array(src, dtype=np.int64), np.array(pos, dtype=np.int64)
    src, pos = np.expand_dims(src, -1), np.expand_dims(pos, -1)
    src, pos = np.expand_dims(src, -1), np.expand_dims(pos, -1)
    return src, pos




def deepwalk_generator(graph,
                       batch_size=512,
                       walk_len=5,
                       win_size=2,
                       neg_num=5,
                       epoch=200,
                       filelist=None):
    """
    此函数用于生成训练所需要的(中心节点、正样本、负样本)
    """
    def walks_generator():
        # 读取 random walk 序列
        if filelist is not None:
            bucket = []
            for filename in filelist:
                with io.open(filename) as inf:
                    for line in inf:
                        walk = [int(x) for x in line.strip('\n').split(' ')]
                        bucket.append(walk)
                        if len(bucket) == batch_size:
                            yield bucket
                            bucket = []
            if len(bucket):
                yield bucket
        else:
            # 如果没有找到存储random walk的文件,则在此处设置开始游走
            for _ in range(epoch):
                for nodes in graph.node_batch_iter(batch_size):
                    walks = graph.random_walk(nodes, walk_len)
                    yield walks


    def wrapper():
        # 生成训练用样本
        for walks in walks_generator():
            src, pos = gen_pair(walks, win_size, win_size)
            if src.shape[0] == 0:
                continue
            # 在图中随机采样节点,作为当前 src 节点的负节点
            negs = graph.sample_nodes([len(src), neg_num, 1]).astype(np.int64)
            yield [src, pos, negs]


    return wrapper




def process(args):
    idx, graph, save_path, epoch, batch_size, walk_len, seed = args
    with open('%s/%s' % (save_path, idx), 'w') as outf:
        for _ in range(epoch):
            np.random.seed(seed)
            for nodes in graph.node_batch_iter(batch_size):
                walks = graph.random_walk(nodes, walk_len)
                for walk in walks:
                    outf.write(' '.join([str(token) for token in walk]) + '\n')




def main(args):
    """
    主函数
    """ 
    hidden_size = args.hidden_size
    neg_num = args.neg_num
    epoch = args.epoch
    save_path = args.save_path
    batch_size = args.batch_size
    walk_len = args.walk_len
    win_size = args.win_size


    # 设置模型保存路径
    if not os.path.isdir(save_path):
        os.makedirs(save_path)
    # 导入数据集
    dataset = data_loader.ArXivDataset()
    #print(type(dataset))


    # 构建图
    num_nodes = 10


    # 定义图中的边集
    edge_list = [(2, 0), (2, 1), (3, 1),(4, 0), (5, 0),
             (6, 0), (6, 4), (6, 5), (7, 0), (7, 1),
             (7, 2), (7, 3), (8, 0), (9, 7)]


    # 随机初始化节点特征,特征维度为 d
    d = 16
    feature = np.random.randn(num_nodes, d).astype("float32")


    # 随机地为每条边赋值一个权重
    edge_feature = np.random.randn(len(edge_list), 1).astype("float32")


 




    # Use your random_walk -- DeepWalk作业部分
    if args.use_my_random_walk:
        from userdef_graph import UserDefGraph
        '''
        pgl_graph = dataset.graph
        dataset.graph = UserDefGraph(num_nodes=pgl_graph.num_nodes,
                                    edges=pgl_graph.edges,
                                    node_feat=pgl_graph.node_feat,
                                    edge_feat=pgl_graph.edge_feat)
        '''
        dataset.graph = UserDefGraph(num_nodes = num_nodes,
                    edges = edge_list,
                    node_feat = {'feature':feature},
                    edge_feat ={'edge_feature': edge_feature})






    log.info("Start random walk on disk...")
    walk_save_path = os.path.join(save_path, "walks")
    if not os.path.isdir(walk_save_path):
        os.makedirs(walk_save_path)
    # 多进程随机游走过程
    pool = Pool(args.processes)
    args_list = [(x, dataset.graph, walk_save_path, 1, batch_size,
                  walk_len, np.random.randint(2**32))
                 for x in range(epoch)]
    pool.map(process, args_list)
    filelist = glob.glob(os.path.join(walk_save_path, "*"))
    log.info("Random walk on disk Done.")


    train_steps = int(dataset.graph.num_nodes / batch_size) * epoch


    place = fluid.CPUPlace()
    deepwalk_prog = fluid.Program()
    startup_prog = fluid.Program()


    with fluid.program_guard(deepwalk_prog, startup_prog):
        with fluid.unique_name.guard():
            deepwalk_pyreader, deepwalk_loss = deepwalk_model(
                dataset.graph, hidden_size=hidden_size, neg_num=neg_num)
            #lr = l.polynomial_decay(0.025, train_steps, 0.0001) # 对初始学习率使用多项式衰减
            lr = 0.0001 # 对初始学习率使用多项式衰减
            adam = fluid.optimizer.Adam(lr)
            adam.minimize(deepwalk_loss)


    # 将deepwalk_generator生成的数据源feed到deepwalk_pyreader
    deepwalk_pyreader.decorate_tensor_provider(
        deepwalk_generator(
            dataset.graph,
            batch_size=batch_size,
            walk_len=walk_len,
            win_size=win_size,
            epoch=epoch,
            neg_num=neg_num,
            filelist=filelist))


    deepwalk_pyreader.start() # 开始数据传递


    exe = fluid.Executor(place)
    exe.run(startup_prog)


    prev_time = time.time()
    step = 0


    # 开始训练
    while 1:
        try:
            deepwalk_loss_val = exe.run(deepwalk_prog,
                                        fetch_list=[deepwalk_loss],
                                        return_numpy=True)[0]
            cur_time = time.time()
            use_time = cur_time - prev_time
            prev_time = cur_time
            step += 1
            if step == 1 or step % 10 == 0:
                log.info("Step %d " % step + "DeepWalk Loss: %f " %
                        deepwalk_loss_val + " %f s/step." % use_time)
        except fluid.core.EOFException:
            deepwalk_pyreader.reset()
            break


    # 保存训练好的DeepWalk模型
    fluid.io.save_persistables(exe,
                               os.path.join(save_path, "paddle_model"),
                               deepwalk_prog)




if __name__ == '__main__':
    # 超参数设置
    parser = argparse.ArgumentParser(description='deepwalk')
    parser.add_argument("--use_my_random_walk", action='store_true', help="use_my_random_walk")
    parser.add_argument("--hidden_size", type=int, default=128)
    parser.add_argument("--neg_num", type=int, default=20)
    parser.add_argument("--epoch", type=int, default=1)
    parser.add_argument("--batch_size", type=int, default=512)
    parser.add_argument("--walk_len", type=int, default=5)
    parser.add_argument("--win_size", type=int, default=5)
    parser.add_argument("--save_path", type=str, default="./tmp/deepwalk")
    parser.add_argument("--processes", type=int, default=2)
    args = parser.parse_args()
    log.info(args)
    main(args)


标签:DeepWalk,graph,walk,神经网络,np,游走,deepwalk,nodes,size
From: https://blog.51cto.com/u_10561036/6123459

相关文章