import tensorflow as tf
import numpy as np
#creat data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
"""create tensorflow structure start"""
Weights = tf.Variable(tf.random.uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zero([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
#build optimizer, 0.5 represents learning rate
optimizer = tf.compat.v1.train.GradientDescentOpyimizer(0.5)
tf.compat.v1.disable_eager_executionO()
train = optimizer.minimize(loss,var_list=(Weights,biases))
#initialization
init = tf.compat.v1.global_variables_initializer()
"""create tensorflow structure end"""
#activation会话两种写法
#method 1
sess = tf.compat.v1.Session()
sess.run(init)
#method2
matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])
product = tf.matcul(matrix1,matrix2) # matrix multiply np.dot(m1,m2)
with tf.compat.v1.Session() as sess:
result2 = sess.run(product)
print(reault2)
[[12]]
"""Variable"""
import tensorflow as tf
state = tf.Variable(0,name='counter')
#print(state.name)
one = tf.constant(1)
new_value = tf.add(state,one)
update = tf.compat.v1.assign(state,new_value)
init = tf.compat.v1.global_variables_initializer()#must use if define variable
with tf.compat.v1.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
print(sess.run(state))
1
2
3
"""placeholder是Tensorflow中的占位符,暂时存储变量"""
"""如果想要从外部传入date,就需要tf.placeholder(),然后用sess.run(paraA,feed_dict={})的形式传递和数据"""
import tensorflow.compat.v1 as tf
import tensorflow
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf,float32)
output = tensorflow.multiply(input1,input2)
with tf.Session() as sess:
print(sess.run(output,feed_dict={input1:[7],input2:[2.]}))
[14.]
"""添加层def add_layer()"""
import tensorflow.compat.v1 as tf
import tensorflow as tf
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random.normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases # y = W*x + b
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
import tensorflow.compat.v1 as tf
# import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import numpy as np
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights = tf.Variable(tf.random.normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weights)+biases # y=wx+b
if activation_function == None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300,dtype=float32)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
l1 = add_layer(x_data,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction)))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
iniy = tf.global_variable_initializer()
sess = tf.Session()
sess.run(init)
for i in range(100):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i % 50 ==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
https://zhuanlan.zhihu.com/p/373664997
标签:compat,sess,data,v1,神经网络,tf,tensorflow,写法 From: https://www.cnblogs.com/juneyiiii/p/17210411.html