首页 > 编程语言 >代码随想录算法训练营第二十四天 | ● 理论基础 ● 77. 组合

代码随想录算法训练营第二十四天 | ● 理论基础 ● 77. 组合

时间:2023-01-13 00:11:38浏览次数:75  
标签:遍历 递归 随想录 77 算法 第二十四 回溯 集合 节点

今日内容:

● 理论基础

● 77. 组合

详细布置

理论基础

其实在讲解二叉树的时候,就给大家介绍过回溯,这次正式开启回溯算法,大家可以先看视频,对回溯算法有一个整体的了解。

题目链接/文章讲解:https://programmercarl.com/%E5%9B%9E%E6%BA%AF%E7%AE%97%E6%B3%95%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html

视频讲解:https://www.bilibili.com/video/BV1cy4y167mM

回溯法的效率

回溯法的性能如何呢,这里要和大家说清楚了,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。

#回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

相信大家看着这些之后会发现,每个问题,都不简单!

另外,会有一些同学可能分不清什么是组合,什么是排列?

组合是不强调元素顺序的,排列是强调元素顺序

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

#如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。

#回溯法模板

这里给出Carl总结的回溯算法模板。

在讲二叉树的递归(opens new window)中我们说了递归三部曲,这里我再给大家列出回溯三部曲。

  • 回溯函数模板返回值以及参数

在回溯算法中,习惯是函数起名字为backtracking,这个起名大家随意。

回溯算法中函数返回值一般为void。

再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。

回溯函数伪代码如下:

void backtracking(参数)
  • 回溯函数终止条件

既然是树形结构,那么我们在讲解二叉树的递归(opens new window)的时候,就知道遍历树形结构一定要有终止条件。

所以回溯也有要终止条件。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

所以回溯函数终止条件伪代码如下:

if (终止条件) {
    存放结果;
    return;
}
  • 回溯搜索的遍历过程

在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

如图:

注意图中,我特意举例集合大小和孩子的数量是相等的!

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

分析完过程,回溯算法模板框架如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

总结

什么是回溯算法,知道了回溯和递归是相辅相成的。

接着提到了回溯法的效率,回溯法其实就是暴力查找,并不是什么高效的算法。

然后列出了回溯法可以解决几类问题,可以看出每一类问题都不简单。

最后回溯法解决的问题都可以抽象为树形结构(N叉树),并给出了回溯法的模板。

77. 组合

对着在回溯算法理论基础 给出的 代码模板,来做本题组合问题,大家就会发现 写回溯算法套路。

在回溯算法解决实际问题的过程中,大家会有各种疑问,先看视频介绍,基本可以解决大家的疑惑。

本题关于剪枝操作是大家要理解的重点,因为后面很多回溯算法解决的题目,都是这个剪枝套路。

题目链接/文章讲解:https://programmercarl.com/0077.%E7%BB%84%E5%90%88.html

视频讲解:https://www.bilibili.com/video/BV1ti4y1L7cv

剪枝操作:https://www.bilibili.com/video/BV1wi4y157er

思路:

回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

可以看出这个棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不在重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
private void combineHelper(int n, int k, int startIndex){
    
}
  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

 if (path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){
            path.add(i);
            combineHelper(n, k, i + 1);
            path.removeLast();
        }

backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

完整代码如下:

class Solution {
    List<List<Integer>> res = new ArrayList<>();//存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();//用来存放符合条件结果
    public List<List<Integer>> combine(int n, int k) {
        combinHelper(n,k,1);
        return res;
    }
    /**
     * 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
     * @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
     */
    private void combinHelper(int n,int k, int startIndex){
        //终止条件
        if (path.size() == k){
            res.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) {
            path.add(i);//处理结点
            combinHelper(n,k,i+1);//递归
            path.removeLast();//回溯,撤销处理的结点
        }
    }
}

总结

组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。

从而引出了回溯法就是解决这种k层for循环嵌套的问题。

然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。

接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

标签:遍历,递归,随想录,77,算法,第二十四,回溯,集合,节点
From: https://www.cnblogs.com/gaoyuan2lty/p/17048327.html

相关文章