首页 > 编程语言 >实验四:神经网络算法实验

实验四:神经网络算法实验

时间:2022-11-20 18:13:17浏览次数:47  
标签:ypred sigmoid h2 self h1 算法 神经网络 实验 sum

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握神经网络模型的编程实现方法。

【实验内容】

1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了两类蚊子(或飞蠓midges),他们测量了这两类蚊子每个个体的翼长和触角长,数据如下:

翼长 触角长 类别
1.78 1.14 Apf
1.96 1.18 Apf
1.86 1.20 Apf
1.72 1.24 Apf
2.00 1.26 Apf
2.00 1.28 Apf
1.96 1.30 Apf
1.74 1.36 Af
1.64 1.38 Af
1.82 1.38 Af
1.90 1.38 Af
1.70 1.40 Af
1.82 1.48 Af
1.82 1.54 Af
2.08 1.56 Af

现有三只蚊子的相应数据分别为(1.24,1.80)、(1.28,1.84)、(1.40,2.04),请判断这三只蚊子的类型。

【实验报告要求】

建立三层神经网络模型,编写神经网络训练的推理的代码,实现类型预测;
对照实验内容,撰写实验过程、算法及测试结果,程序不得使用sklearn库;
代码规范化:命名规则、注释;
查阅文献,讨论神经网络的应用场景。

import numpy as npdef sigmoid(x):
    return 1/(1+np.exp(-x))#f(x)=1/(1+exp(-x))
def deriv_sigmoid(x):
    fx=sigmoid(x)
    return fx*(1-fx)#f'(x)=f(x)*(1-f(x))
def mse_loss(y_true,y_pred):
    return ((y_true-y_pred)**2).mean()
class OurNeuralNetwork:
    def __init__(self):
        self.w1=np.random.normal()#权重
        self.w2=np.random.normal()
        self.w3=np.random.normal()
        self.w4=np.random.normal()
        self.w5=np.random.normal()
        self.w6=np.random.normal()
        self.b1=np.random.normal()#截距项
        self.b2=np.random.normal()
        self.b3=np.random.normal()
    def feedforward(self,x):
        h1=sigmoid(self.w1*x[0]+self.w2*x[1]+self.b1)
        h2=sigmoid(self.w3*x[0]+self.w4*x[1]+self.b2)
        o1=sigmoid(self.w5*h1+self.w6*h2+self.b3)
        return o1
    def train(self,data,all_y_trues):
        learn_rate=0.1
        epochs=1000
        for epoch in range(epochs):
            for x,y_true in zip(data,all_y_trues):
                sum_h1=self.w1*x[0]+self.w2*x[1]+self.b1
                h1=sigmoid(sum_h1)
                sum_h2=self.w3*x[0]+self.w4*x[1]+self.b2
                h2=sigmoid(sum_h2)
                sum_o1=self.w5*h1+self.w6*h2+self.b3
                o1=sigmoid(sum_o1)
                y_pred=o1
                d_L_d_ypred=-2*(y_true-y_pred)
                #Neuron o1
                d_ypred_d_w5=h1*deriv_sigmoid(sum_o1)
                d_ypred_d_w6=h2*deriv_sigmoid(sum_o1)
                d_ypred_d_b3=deriv_sigmoid(sum_o1)
                d_ypred_d_h1=self.w5*deriv_sigmoid(sum_o1)
                d_ypred_d_h2=self.w6*deriv_sigmoid(sum_o1)
                #Neuron h1
                d_h1_d_w1=x[0]*deriv_sigmoid(sum_h1)
                d_h1_d_w2=x[1]*deriv_sigmoid(sum_h1)
                d_h1_d_b1=deriv_sigmoid(sum_h1)
                #Neuron h2
                d_h2_d_w3=x[0]*deriv_sigmoid(sum_h2)
                d_h2_d_w4=x[1]*deriv_sigmoid(sum_h2)
                d_h2_d_b2=deriv_sigmoid(sum_h2)
                #Neuron h1
                self.w1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w1
                self.w2-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w2
                self.b1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_b1
                #Neuron h2
                self.w3-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w3
                self.w4-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w4
                self.b2-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_b2
                #Neuron o1
                self.w5-=learn_rate*d_L_d_ypred*d_ypred_d_w5
                self.w6-=learn_rate*d_L_d_ypred*d_ypred_d_w6
                self.b3-=learn_rate*d_L_d_ypred*d_ypred_d_b3
                if epoch%10==0:
                    y_preds=np.apply_along_axis(self.feedforward,1,data)
                    loss=mse_loss(all_y_trues,y_preds)
                    print("Epoch %d loss:%.3f" % (epoch,loss))
#翼长 触角长
data=np.array([
    [1.78,1.14],
    [1.96,1.18],
    [1.86,1.20],
    [1.72,1.24],
    [2.00,1.26],
    [2.00,1.28],
    [1.96,1.30],
    [1.74,1.36],
    [1.64,1.38],
    [1.82,1.38],
    [1.90,1.38],
    [1.70,1.40],
    [1.82,1.48],
    [1.82,1.54],
    [2.08,1.56],
])
#类别:Apf 1, Af 0
all_y_trues=np.array([
    1,
    1,
    1,
    1,
    1,
    1,
    1,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
    0,
])
network=OurNeuralNetwork()
network.train(data,all_y_trues)
test1=np.array([1.24,1.80])
test2=np.array([1.28,1.84])
test3=np.array([1.40,2.04])
print("test1: %.3f" % network.feedforward(test1))
print("test2: %.3f" % network.feedforward(test2))
print("test3: %.3f" % network.feedforward(test3))
#如果概率大于0.5则类型为Apf,小于0.5则类型为Af
for i in [test1,test2,test3]:
    if network.feedforward(i)>0.5:
        print("test类型:Apf")
    else:
        print("test类型:Af")

运行结果:

 

标签:ypred,sigmoid,h2,self,h1,算法,神经网络,实验,sum
From: https://www.cnblogs.com/macheng1234/p/16909108.html

相关文章

  • 实验四:神经网络算法实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了......
  • tcp的拥塞控制算法reno与bbr
    拥塞的指证超时---拥塞收到三个冗余的ACK---轻微拥塞发送方如何控制向网络中发送的速率发送方在对方未经确认的情况下,可以向网络中发送多少字节:min(发送方拥塞窗......
  • 强化学习代码实战-09 SAC 算法
    离线学习算法:A3C,PPO,TRPO在线学习算法:DDPG,训练不稳定,容易陷入局部最优SAC:离线策略,随机策略,最大化累积奖励的同时最大化策略的熵(更好地探索环境,熵值越高,策略越随机,目......
  • 实验四:神经网络算法实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现......
  • 英文论文怎么做实验?
    参考资料:自己的心得。第一件事,搞定Dataset,Baseline,Metrics。(重中之重)Dataset:自己选择,审视,筛查Baseline:别人有代码的直接拿来用,没有代码的自己按照......
  • 实验四:神经网络算法实验
    【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了......
  • 实验四:神经网络算法实验
    实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验内容】1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了......
  • 蓝桥杯-算法训练-和为T
    知识预备-二进制枚举详细讲解:https://sugar.blog.csdn.net/article/details/81099340?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~d......
  • 实验四:神经网络算法实验
    实验四:神经网络算法实验班级:20大数据3班学号:201613341【实验目的】理解神经网络原理,掌握神经网络前向推理和后向传播方法;掌握神经网络模型的编程实现方法。【实验......
  • 基于加权对立和贪婪搜索多模态工程问题的黑猩猩优化算法(Matlab代码实现)
    ......