实验目的】
理解神经网络原理,掌握神经网络前向推理和后向传播方法;
掌握神经网络模型的编程实现方法。
【实验内容】
1.1981年生物学家格若根(W.Grogan)和维什(W.Wirth)发现了两类蚊子(或飞蠓midges),他们测量了这两类蚊子每个个体的翼长和触角长,数据如下:
翼长 触角长 类别
1.78 1.14 Apf
1.96 1.18 Apf
1.86 1.20 Apf
1.72 1.24 Apf
2.00 1.26 Apf
2.00 1.28 Apf
1.96 1.30 Apf
1.74 1.36 Af
1.64 1.38 Af
1.82 1.38 Af
1.90 1.38 Af
1.70 1.40 Af
1.82 1.48 Af
1.82 1.54 Af
2.08 1.56 Af
现有三只蚊子的相应数据分别为(1.24,1.80)、(1.28,1.84)、(1.40,2.04),请判断这三只蚊子的类型。
【实验报告要求】
建立三层神经网络模型,编写神经网络训练的推理的代码,实现类型预测;
对照实验内容,撰写实验过程、算法及测试结果,程序不得使用sklearn库;
代码规范化:命名规则、注释;
查阅文献,讨论神经网络的应用场景。
神经网络模型
import numpy as np def sigmoid(x): return 1/(1+np.exp(-x))#f(x)=1/(1+exp(-x)) def deriv_sigmoid(x): fx=sigmoid(x) return fx*(1-fx)#f'(x)=f(x)*(1-f(x)) def mse_loss(y_true,y_pred): return ((y_true-y_pred)**2).mean() class OurNeuralNetwork: def __init__(self): self.w1=np.random.normal()#权重 self.w2=np.random.normal() self.w3=np.random.normal() self.w4=np.random.normal() self.w5=np.random.normal() self.w6=np.random.normal() self.b1=np.random.normal()#截距项 self.b2=np.random.normal() self.b3=np.random.normal() def feedforward(self,x): h1=sigmoid(self.w1*x[0]+self.w2*x[1]+self.b1) h2=sigmoid(self.w3*x[0]+self.w4*x[1]+self.b2) o1=sigmoid(self.w5*h1+self.w6*h2+self.b3) return o1 def train(self,data,all_y_trues): learn_rate=0.1 epochs=1000 for epoch in range(epochs): for x,y_true in zip(data,all_y_trues): sum_h1=self.w1*x[0]+self.w2*x[1]+self.b1 h1=sigmoid(sum_h1) sum_h2=self.w3*x[0]+self.w4*x[1]+self.b2 h2=sigmoid(sum_h2) sum_o1=self.w5*h1+self.w6*h2+self.b3 o1=sigmoid(sum_o1) y_pred=o1 d_L_d_ypred=-2*(y_true-y_pred) #Neuron o1 d_ypred_d_w5=h1*deriv_sigmoid(sum_o1) d_ypred_d_w6=h2*deriv_sigmoid(sum_o1) d_ypred_d_b3=deriv_sigmoid(sum_o1) d_ypred_d_h1=self.w5*deriv_sigmoid(sum_o1) d_ypred_d_h2=self.w6*deriv_sigmoid(sum_o1) #Neuron h1 d_h1_d_w1=x[0]*deriv_sigmoid(sum_h1) d_h1_d_w2=x[1]*deriv_sigmoid(sum_h1) d_h1_d_b1=deriv_sigmoid(sum_h1) #Neuron h2 d_h2_d_w3=x[0]*deriv_sigmoid(sum_h2) d_h2_d_w4=x[1]*deriv_sigmoid(sum_h2) d_h2_d_b2=deriv_sigmoid(sum_h2) #Neuron h1 self.w1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w1 self.w2-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_w2 self.b1-=learn_rate*d_L_d_ypred*d_ypred_d_h1*d_h1_d_b1 #Neuron h2 self.w3-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w3 self.w4-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_w4 self.b2-=learn_rate*d_L_d_ypred*d_ypred_d_h2*d_h2_d_b2 #Neuron o1 self.w5-=learn_rate*d_L_d_ypred*d_ypred_d_w5 self.w6-=learn_rate*d_L_d_ypred*d_ypred_d_w6 self.b3-=learn_rate*d_L_d_ypred*d_ypred_d_b3 if epoch%10==0: y_preds=np.apply_along_axis(self.feedforward,1,data) loss=mse_loss(all_y_trues,y_preds) print("Epoch %d loss:%.3f" % (epoch,loss)) #翼长 触角长 data=np.array([ [1.78,1.14], [1.96,1.18], [1.86,1.20], [1.72,1.24], [2.00,1.26], [2.00,1.28], [1.96,1.30], [1.74,1.36], [1.64,1.38], [1.82,1.38], [1.90,1.38], [1.70,1.40], [1.82,1.48], [1.82,1.54], [2.08,1.56], ]) #类别:Apf 1, Af 0 all_y_trues=np.array([ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ]) network = OurNeuralNetwork() network.train(data,all_y_trues) ceshi1 = np.array([1.24,1.80]) ceshi2 = np.array([1.28,1.84]) ceshi3 = np.array([1.40,2.04]) print("ceshi1:%.3f"% network.feedforward(ceshi1)) print("ceshi2:%.3f"% network.feedforward(ceshi2)) print("ceshi3:%.3f"% network.feedforward(ceshi3)) for i in [ceshi1,ceshi2,ceshi3]: if network.feedforward(i)>0.5: print("ceshi类型为:Apf") else: print("ceshi类型为:Af")
神经网络的应用场景
主要的领域有图像和视频(如图像识别和分割)、语音和语言(如语音识别和机器翻译)、医疗(如医疗图像诊断)、游戏(如AlphaGo的发明)、机器人(只能机器人是强化学习的主要研究领域)。
标签:ypred,sigmoid,h2,self,h1,算法,神经网络,实验,np From: https://www.cnblogs.com/123yechao/p/16908611.html