矩阵运算
变换矩阵是先旋转再平移
P = R*p + t1
先平移再旋转的话
P= R(p+t2)=R*p +R*t2
其中平移矩阵之间的关系是 t1 = R*t2
示例代码
# -*- coding: utf-8 -*-
import numpy as np
from time import time
if __name__ == "__main__":
t_s = time()
##calibration
R_calib_rad = [0,0,-1.16]
T_calib = [9.114,10.93, -7.9]
base_orig_point =np.array(
[[ -32.2852 ,-1901.231 ,7.5923],[-32.9883 , -1901.567,7.0294],
[ -10.2388 ,-1901.685 ,7.0294],[-35.9165 , -1905.568,2.304 ],
[ -27.016 , -1902.966 , 2.7729 ]])
## RT矩阵
rotation_angle = (np.array(R_calib_rad)).tolist()
pitch, roll, yaw = tuple(rotation_angle)
pitch_R = np.array([
[np.cos(pitch), 0, np.sin(pitch)],[0, 1,0],[-np.sin(pitch),0, np.cos(pitch)]
])
roll_R = np.array([
[1,0,0],[0,np.cos(roll), -np.sin(roll)],[0,np.sin(roll), np.cos(roll)]
])
yaw_R = np.array([
[np.cos(yaw), -np.sin(yaw), 0],[np.sin(yaw), np.cos(yaw), 0],[0,0,1]
])
################method a 先平移再旋转
rotation_matrix = np.matmul(pitch_R, np.matmul(roll_R, yaw_R))
translate_matrix_a = np.hstack([np.eye(3),np.array(T_calib).reshape(-1,1)])
translate_matrix = np.vstack([translate_matrix_a, [0,0,0,1]])
A_orig_points = np.zeros((base_orig_point.shape[0],4))
data_mid = np.vstack([base_orig_point[:,:3].T, np.ones((base_orig_point.shape[0]))])
data_trans = np.matmul(translate_matrix, data_mid).T
A_orig_points[:, :3] = data_trans[:, :3]
data_trans = np.matmul(rotation_matrix, A_orig_points[:,:3].T).T
A_orig_points[:, :3] = data_trans
print(A_orig_points)
################method b 先旋转再平移 变换矩阵=先旋转再平移
rotation_matrix = np.matmul(pitch_R, np.matmul(roll_R, yaw_R))
translate_matrix_b = np.array(T_calib).reshape(-1,1)
### t1 = R*t2
rot_translate_matrix = np.dot(rotation_matrix,translate_matrix_b)
print(rot_translate_matrix)
TR_matrix = np.eye(4,dtype=np.float32)
TR_matrix[:3,:3] = rotation_matrix
## 注意数据类型
TR_matrix[:3,3]= rot_translate_matrix[:,0]
print(TR_matrix)
# # # """points transform """
orig_points = np.zeros((base_orig_point.shape[0],4))
orig_points[:,:3] = base_orig_point
orig_points[:,3]=np.ones((base_orig_point.shape[0]))
new_xyz_array = np.dot(TR_matrix, orig_points.T).T
print(new_xyz_array)
读写PCD
1.open3d
open3d.io
open3d.io.read_point_cloud(filename[, format, …]) Function to read PointCloud from file
open3d.cpu.pybind.geometry.PointCloud
class open3d.geometry.PointCloud
open3d.t
geometry Tensor-based geometry defining module.
io Tensor-based input-output handling module.
open3d.cpu.pybind.t.geometry.PointCloud
pipelines Tensor-based geometry processing pipelines
class open3d.t.geometry.PointCloud
# Default attribute: "positions".
open3d.t.geometry.Geometry
2.读写示例
##cloud point
pcd = o3d.t.io.read_point_cloud(exp_pcdfile)
exp_points = pcd.point
point_xyz = exp_points['positions'].numpy()
intensity = exp_points['intensity']
# ## trans and save
transformed_points = transform_TR(point_xyz,T_matrix,R_matrix)
result_pcd = o3d.t.geometry.PointCloud()
result_pcd.point['positions'] = o3d.core.Tensor(transformed_points[:, :3],dtype=o3d.core.Dtype.Float32)
result_pcd.point['intensity'] = o3d.core.Tensor(intensity.numpy(),dtype=o3d.core.Dtype.Float32)
o3d.t.io.write_point_cloud( save_file, result_pcd, write_ascii=False)
参考
http://www.open3d.org/docs/release/index.html
标签:平移,matrix,point,points,旋转,open3d,np,orig
From: https://www.cnblogs.com/ytwang/p/16870672.html