首页 > 其他分享 >Xiaoning Sun-2022-OverlookedPosesActuallyMakeSence-Distilling Privileged KnowledgeForHumanMotionPred

Xiaoning Sun-2022-OverlookedPosesActuallyMakeSence-Distilling Privileged KnowledgeForHumanMotionPred

时间:2022-11-07 19:35:11浏览次数:86  
标签:KnowledgeForHumanMotionPrediction Distilling sequence Sun prediction Encoder 序列 

# Overlooked Poses Actually Make Sense: Distilling Privileged Knowledge for Human Motion Prediction #paper


1. paper-info

1.1. Metadata

  • Author:: [[Xiaoning Sun]], [[Qiongjie Cui]], [[Huaijiang Sun]], [[Bin Li]], [[Weiqing Li]], [[Jianfeng Lu]]
  • 作者机构:: Nanjing University
  • Keywords:: #HMP , #GCN
  • Journal::
  • Date:: [[2022/08/02]]
  • 状态:: #Done
  • 链接:: https://arxiv.org/abs/2208.01302v1
  • 修改时间:: 2022.11.7

1.2. Abstract

Previous works on human motion prediction follow the pattern of building a mapping relation between the sequence observed and the one to be predicted. However, due to the inherent complexity of multivariate time series data, it still remains a challenge to find the extrapolation relation between motion sequences. In this paper, we present a new prediction pattern, which introduces previously overlooked human poses, to implement the prediction task from the view of interpolation. These poses exist after the predicted sequence, and form the privileged sequence. To be specific, we first propose an InTerPolation learning Network (ITP-Network) that encodes both the observed sequence and the privileged sequence to interpolate the in-between predicted sequence, wherein the embedded Privileged-sequence-Encoder (Priv-Encoder) learns the privileged knowledge (PK) simultaneously. Then, we propose a Final Prediction Network (FP-Network) for which the privileged sequence is not observable, but is equipped with a novel PK-Simulator that distills PK learned from the previous network. This simulator takes as input the observed sequence, but approximates the behavior of Priv-Encoder, enabling FP-Network to imitate the interpolation process. Extensive experimental results demonstrate that our prediction pattern achieves state-of-the-art performance on benchmarked H3.6M, CMU-Mocap and 3DPW datasets in both short-term and long-term predictions.


2. Introduction

  • 领域:
    • Human motion prediction
  • 之前的方法:
    • GCN-based
    • RNN-based
  • 之前方法:
    • 会有错误累计的问题。
    • 通常会收敛到静态平均姿势。
    • 这些模型通常都是通过一段历史序列去预测另一段序列。
  • 作者的方法:
    • 将预测序列的未来序列加入模型中,为预测序列在提供一种先验。

Fig.1
Source: https://arxiv.org/abs/2208.01302v1

Fig.1展示了作者模型的大致流程,分为两个过程:

  1. InTerPolation learning Network(ITP-Network)
  2. Final Prediction Network(FP-Network)
    整个网络模型是基于GCN的。

3. Proposed Method

定义:
\(X_{1:N}=[x_1,x_2,...,x_N]\):表示历史动作序列
\(X_{N+1:N+T}\):待预测的动作序列
\(X_{N+T+1:N+T+P}\):privileged sequence,也就是待预测序列的未来序列。
网络结构如Fig.2


Fig.2. Network architecture
Source: https://arxiv.org/abs/2208.01302v1

3.1. Spatio-Temporal Encoding

作者使用一个全连接图来表示人体骨架结构,该图有\(K\)个\(node\), 用领接矩阵\(A \in \mathbb{R}^{K\times K}\) 来表示图中的边信息。
点信息:\(H^{(l)} \in \mathbb{R}^{K\times F^{(l)}}\)
权重矩阵:\(W^{(l)} \in \mathbb{R}^{F^{(l)}\times F^{(l+1)}}\)
将点信息喂入GCN-layer中,得到下一层的点信息。表达式如下:

\[H^{(l+1)} = \sigma (A^{(l)}H^{(l)}W^{(l)}) \]

3.2. Network Structure

The InterPolation learning Network
组成部分:

  1. Obs-Encoder
  2. Priv-Encoder
    分别对历史序列和privileged sequence进行编码,这里有一个残差连接。这两部分的残差连接比例为\(0.7:0.3\) 。

The Final Prediction Network(FP-network)
组成部分:

  1. obs-Encoder:观测序列取与训练阶段相同时间步长的动作序列\(N+T+P\)
  2. PK-Simulator:用于训练得到的Priv-Encoder

3.3. Training

损失函数:

  • Mean Per Joint Position Error
  • Mean Angle Error

4. 总结

以往的文章只是利用历史序列,而该文章将预测序列的未来序列当做一直先验加入预测当中。利用GCN-based模型进行训练。

感觉这种方法结构不会优于使用Transformer-based模型


标签:KnowledgeForHumanMotionPrediction,Distilling,sequence,Sun,prediction,Encoder,序列,
From: https://www.cnblogs.com/guixu/p/16867141.html

相关文章

  • DDoS木马-Tsunami家族样本分析
    <title></title>DDoS⽊⻢¨NBSP;-Tsunami家族样本分析⼀、样本概述样本运⾏平台为linux系统,作为僵⼫⽹络节点进⾏DDoS攻击。连接IRC服务器,通过互联⽹中继聊天接收......
  • 字符串匹配算法-Sunday
    以往不论是上课还是各种资料书上,看到关于字符串匹配的算法,大抵都是KMP了。然而KMP的next数组理解起来颇为费劲,且容易忘记。在LeetCode刷题中偶然发现了一个叫Sunday的算法,不......
  • Sunnyui
    Sunnyui C#:WinForm之Command-走看看(zoukankan.com)《Dotnet9》系列-开源C#Winform控件库1《HZHControls》强力推荐 在机缘巧合的情况下,某个WPF群群友发了Winfo......
  • APK downgrade extraction fails on Samsung smartphones
    AfriendofmineEllensheasksmetogiveherahand.CoupledaysagoshetriedtoextractLINEchathistoryfromaSamsungsmartphonerunningAndroid12asb......
  • 【做题笔记】洛谷P5584 【SWTR-01】Sunny's Crystals
    ProblemP5584【SWTR-01】Sunny'sCrystals题目大意:给你一个长度为\(n\)的序列,每次可以删掉下标为\(2\)的非负整数次幂的数,删掉一个数后他后面的数会往前补,问删掉所......
  • Java服务发起HTTPS请求报错:PKIX path building failed: sun.security.provider.certpa
    Java服务发起HTTPS请求报错:PKIXpathbuildingfailed:sun.security.provider.certpath.SunCertPathBuilderException1.从域名的https导出下载证书文件下载证书第一步是......
  • JAVA1.8-SSL错误:javax.net.ssl.SSLHandshakeException: sun.security.validator.Valid
    问题现象JavaSpring应用发送数据报如下问题。2022-10-0610:04:19.068ERROR23100---[nio-8081-exec-1]o.a.c.c.C.[.[.[/].[dispatcherServlet]:Servlet.se......
  • 字符串匹配之Sunday算法
    简介Sunday算法是一种字符串匹配算法,相比于KMP算法,它比较简单易学。在有些时候,比如字符串很长的时候,它是比KMP要高效的。核心思想从前往后匹配,匹配失败时关注主串中......
  • [Typescript] 41. Medium - IsUnion
    Implementatype IsUnion,whichtakesaninputtype T andreturnswhether T resolvestoauniontype.Forexample:typecase1=IsUnion<string>//false......
  • Unity2d SunnyLand (一) 开发环境 + Tilemap
    一、开发环境.net6.0+.netframework4.7.1dev +vscode +unity2022.1.15将vscode设置为默认脚本编辑器  二、Tilemap1.导入资源  2.设置属性 ......