首页 > 其他分享 >前端性能优化原理与实践笔记

前端性能优化原理与实践笔记

时间:2025-01-05 22:00:50浏览次数:1  
标签:缓存 浏览器 DOM 前端 渲染 笔记 JS 优化 我们

知识体系与小册格局

写给读者

提起性能优化,大家现在脑海里第一时间会映射出什么内容呢?

可能是类似“雅虎军规”《高性能 JavaScript》这样历久弥香的经典之作,也可能是搜索引擎聚合给你的一篇又一篇以性能优化为主题的个人或团队实践而来的“私货”。至少当我确定自己的研发方向、并接到第一个性能优化任务时,我做的第一件事是向搜索引擎求助,第二件事是买书,然后开始了摸着石头过河,前后花费了大量的时间和精力。我深感性能优化实在是前端知识树中特别的一环——当你需要学习前端框架时,文档和源码几乎可以告诉你所有问题的答案,当你需要学习 Git 时,你也可以找到放之四海皆准的实践方案。但性能优化却不一样,它好像只能是一个摸索的过程。

这个摸索的过程是痛苦的、漫长的,也是紧要的。因为在如今的互联网环境下,一个前端团队如果只把性能优化这个任务写在纸上,而不投入实践,它将缺失最基本的竞争力。

笔者写这本小册,是希望通过短短十数个章节的讲解,尽可能降低一些大家学习性能优化的成本。

一方面,这本小册为没有接触过性能优化的新同学建立起一个正确的前端性能优化的“世界观”,知道性能优化是什么、为什么、怎么做,从而使性能优化这件事情有迹可循,有路可走。这样在面试现场被问到性能优化层面的问题时,能够做到滔滔不绝、言之有物,而非像背书一样罗列干巴巴的知识点,最终淹没在茫茫的求职大军中。另一方面,小册可以为在职的工程师们提供一线团队已经实践过的“方法论”,知道什么场景下该做什么事情,最终在脑海中留下一张涵盖核心原理和实践的、可随时查阅并且高度可扩展的性能优化思路索引表。然后在今后的开发生活中可以去践行它,更进一步去挖掘它。把性能优化变作你前端工程师生涯的一门必修课,进而演化为自己研发方面的核心竞争力。

同时,相信大家可以明确这样一个学习观念:任何技术的掌握,都离不开一定比例的理论基础和实际操作的支撑。

具体到前端性能优化这件事情上,我认为它是 20% 的理论,加上至少 80% 的实践,甚至很多理论本身也都是我们在具体的业务场景中实践出来的。所以希望大家阅读本小册时,能够读到一些“书本之外的东西”——最好是一边读一边回忆自己既有的开发经历,尝试去留意哪些知识是已知的,哪些是未知的。

这样读完之后,就可以有的放矢地把这些知识转换为自己的项目实践——前端技术日新月异,性能方案永远都在更迭,所以一定要形成自己的学习思路。

建议每一位读者都带着“学了就要用”的心态去读这本小册。如果阅读结束,能够为你带来哪怕一个小小的开发习惯或者优化观念上的改变,这数小时的阅读时间就算没有白费。

知识体系: 从一道面试题说起

在展开性能优化的话题之前,我想先抛出一个老生常谈的面试问题:

从输入 URL 到页面加载完成,发生了什么?

这个问题非常重要,因为我们后续的内容都将以这个问题的答案为骨架展开。我希望正在阅读这本小册的各位可以在心里琢磨一下这个问题——无须你调动太多计算机的专业知识,只需要你用最快的速度在脑海中架构起这个抽象的过程——我们接下来所有的工作,就是围绕这个过程来做文章。

我们现在站在性能优化的角度,一起简单地复习一遍这个经典的过程:首先我们需要通过 DNS(域名解析系统)将 URL 解析为对应的 IP 地址,然后与这个 IP 地址确定的那台服务器建立起 TCP 网络连接,随后我们向服务端抛出我们的 HTTP 请求,服务端处理完我们的请求之后,把目标数据放在 HTTP 响应里返回给客户端,拿到响应数据的浏览器就可以开始走一个渲染的流程。渲染完毕,页面便呈现给了用户,并时刻等待响应用户的操作(如下图所示)。

我们将这个过程切分为如下的过程片段:

  1. DNS 解析
  2. TCP 连接
  3. HTTP 请求抛出
  4. 服务端处理请求,HTTP 响应返回
  5. 浏览器拿到响应数据,解析响应内容,把解析的结果展示给用户

大家谨记,我们任何一个用户端的产品,都需要把这 5 个过程滴水不漏地考虑到自己的性能优化方案内、反复权衡,从而打磨出用户满意的速度。

从原理到实践:各个击破

我们接下来要做的事情,就是针对这五个过程进行分解,各个提问,各个击破。

具体来说,DNS 解析花时间,能不能尽量减少解析次数或者把解析前置?能——浏览器 DNS 缓存和 DNS prefetch。TCP 每次的三次握手都急死人,有没有解决方案?有——长连接、预连接、接入 SPDY 协议。如果说这两个过程的优化往往需要我们和团队的服务端工程师协作完成,前端单方面可以做的努力有限,那么 HTTP 请求呢?——在减少请求次数和减小请求体积方面,我们应该是专家!再者,服务器越远,一次请求就越慢,那部署时就把静态资源放在离我们更近的 CDN 上是不是就能更快一些?

以上提到的都是网络层面的性能优化。再往下走就是浏览器端的性能优化——这部分涉及资源加载优化、服务端渲染、浏览器缓存机制的利用、DOM 树的构建、网页排版和渲染过程、回流与重绘的考量、DOM 操作的合理规避等等——这正是前端工程师可以真正一展拳脚的地方。学习这些知识,不仅可以帮助我们从根本上提升页面性能,更能够大大加深个人对浏览器底层原理、运行机制的理解,一举两得!

我们整个的知识图谱,用思维导图展示如下:

小册格局

总的来说,我们将从网络层面渲染层面两个大的维度来逐个点亮前端性能优化的技能树。

这两个维度的知识面貌各有千秋:在网络层面,我们需要学习一些必需的理论基础作为前置知识。这部分的学习或许不需要大家写特别多的代码,但需要大家对每一个知识点理解透彻,进而应用到自己日常优化的决策中去。网络层面结束后,由本地存储开始,我们会渐渐过渡到浏览器这一端的优化,大家喜闻乐见的“真代码”就会相应地多起来。

为了使同学们耐心学习一些理论性稍强的知识,我也会尽自己所能去讲述得有趣、易读、可用,同时希望大家可以真的沉下心去理解这些知识,它们与大家喜闻乐见的框架和工具无异,一样是实实在在的生产力。

“经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另一只眼睛看到纸的背面”。在这本小册,代码片段固然有用,它们是“纸面上的话”,我自然希望大家可以记下来、用起来。而代码之外那些反复讲解的原理,则是“纸的背面”,同样是我希望引起大家重视的内容。

现在相信大家已经对我们的优化观念、知识结构、小册格局都有了基本认知,那么我们就赶快趁热打铁,进入实战技能的学习吧~

最后一击——回流(Reflow)与重绘(Repaint)

开篇我们先对上上节介绍的回流与重绘的基础知识做个复习(跳读的同学请自觉回到上上节补齐 →_→)。

回流:当我们对 DOM 的修改引发了 DOM 几何尺寸的变化(比如修改元素的宽、高或隐藏元素等)时,浏览器需要重新计算元素的几何属性(其他元素的几何属性和位置也会因此受到影响),然后再将计算的结果绘制出来。这个过程就是回流(也叫重排)。

重绘:当我们对 DOM 的修改导致了样式的变化、却并未影响其几何属性(比如修改了颜色或背景色)时,浏览器不需重新计算元素的几何属性、直接为该元素绘制新的样式(跳过了上图所示的回流环节)。这个过程叫做重绘。

由此我们可以看出,重绘不一定导致回流,回流一定会导致重绘。硬要比较的话,回流比重绘做的事情更多,带来的开销也更大。但这两个说到底都是吃性能的,所以都不是什么善茬。我们在开发中,要从代码层面出发,尽可能把回流和重绘的次数最小化。

哪些实际操作会导致回流与重绘

要避免回流与重绘的发生,最直接的做法是避免掉可能会引发回流与重绘的 DOM 操作,就好像拆弹专家在解决一颗炸弹时,最重要的是掐灭它的导火索。

触发重绘的“导火索”比较好识别——只要是不触发回流,但又触发了样式改变的 DOM 操作,都会引起重绘,比如背景色、文字色、可见性(可见性这里特指形如visibility: hidden这样不改变元素位置和存在性的、单纯针对可见性的操作,注意与display:none进行区分)等。为此,我们要着重理解一下那些可能触发回流的操作。

回流的“导火索”

  • 最“贵”的操作:改变 DOM 元素的几何属性

这个改变几乎可以说是“牵一发动全身”——当一个DOM元素的几何属性发生变化时,所有和它相关的节点(比如父子节点、兄弟节点等)的几何属性都需要进行重新计算,它会带来巨大的计算量。

常见的几何属性有 width、height、padding、margin、left、top、border 等等。此处不再给大家一一列举。有的文章喜欢罗列属性表格,但我相信我今天列出来大家也不会看、看了也记不住(因为太多了)。我自己也不会去记这些——其实确实没必要记,️一个属性是不是几何属性、会不会导致空间布局发生变化,大家写样式的时候完全可以通过代码效果看出来。多说无益,还希望大家可以多写多试,形成自己的“肌肉记忆”。

  • “价格适中”的操作:改变 DOM 树的结构

这里主要指的是节点的增减、移动等操作。浏览器引擎布局的过程,顺序上可以类比于树的前序遍历——它是一个从上到下、从左到右的过程。通常在这个过程中,当前元素不会再影响其前面已经遍历过的元素。

  • 最容易被忽略的操作:获取一些特定属性的值

当你要用到像这样的属性:offsetTop、offsetLeft、 offsetWidth、offsetHeight、scrollTop、scrollLeft、scrollWidth、scrollHeight、clientTop、clientLeft、clientWidth、clientHeight 时,你就要注意了!

“像这样”的属性,到底是像什么样?——这些值有一个共性,就是需要通过即时计算得到。因此浏览器为了获取这些值,也会进行回流。

除此之外,当我们调用了 getComputedStyle 方法,或者 IE 里的 currentStyle 时,也会触发回流。原理是一样的,都为求一个“即时性”和“准确性”。

如何规避回流与重绘

了解了回流与重绘的“导火索”,我们就要尽量规避它们。但很多时候,我们不得不使用它们。当避无可避时,我们就要学会更聪明地使用它们。

将“导火索”缓存起来,避免频繁改动

有时我们想要通过多次计算得到一个元素的布局位置,我们可能会这样做:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Document</title>
  <style>
    #el {
      width: 100px;
      height: 100px;
      background-color: yellow;
      position: absolute;
    }
  </style>
</head>
<body>
  <div id="el"></div>
  <script>
  // 获取el元素
  const el = document.getElementById('el')
  // 这里循环判定比较简单,实际中或许会拓展出比较复杂的判定需求
  for(let i=0;i<10;i++) {
      el.style.top  = el.offsetTop  + 10 + "px";
      el.style.left = el.offsetLeft + 10 + "px";
  }
  </script>
</body>
</html>

这样做,每次循环都需要获取多次“敏感属性”,是比较糟糕的。我们可以将其以 JS 变量的形式缓存起来,待计算完毕再提交给浏览器发出重计算请求:

// 缓存offsetLeft与offsetTop的值
const el = document.getElementById('el') 
let offLeft = el.offsetLeft, offTop = el.offsetTop

// 在JS层面进行计算
for(let i=0;i<10;i++) {
  offLeft += 10
  offTop  += 10
}

// 一次性将计算结果应用到DOM上
el.style.left = offLeft + "px"
el.style.top = offTop  + "px"

避免逐条改变样式,使用类名去合并样式

比如我们可以把这段单纯的代码:

const container = document.getElementById('container')
container.style.width = '100px'
container.style.height = '200px'
container.style.border = '10px solid red'
container.style.color = 'red'

优化成一个有 class 加持的样子:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Document</title>
  <style>
    .basic_style {
      width: 100px;
      height: 200px;
      border: 10px solid red;
      color: red;
    }
  </style>
</head>
<body>
  <div id="container"></div>
  <script>
  const container = document.getElementById('container')
  container.classList.add('basic_style')
  </script>
</body>
</html>

前者每次单独操作,都去触发一次渲染树更改,从而导致相应的回流与重绘过程。

合并之后,等于我们将所有的更改一次性发出,用一个 style 请求解决掉了。

将 DOM “离线”

我们上文所说的回流和重绘,都是在“该元素位于页面上”的前提下会发生的。一旦我们给元素设置 display: none,将其从页面上“拿掉”,那么我们的后续操作,将无法触发回流与重绘——这个将元素“拿掉”的操作,就叫做 DOM 离线化。

仍以我们上文的代码片段为例:

const container = document.getElementById('container')
container.style.width = '100px'
container.style.height = '200px'
container.style.border = '10px solid red'
container.style.color = 'red'
...(省略了许多类似的后续操作)

离线化后就是这样:

let container = document.getElementById('container')
container.style.display = 'none'
container.style.width = '100px'
container.style.height = '200px'
container.style.border = '10px solid red'
container.style.color = 'red'
...(省略了许多类似的后续操作)
container.style.display = 'block'

有的同学会问,拿掉一个元素再把它放回去,这不也会触发一次昂贵的回流吗?这话不假,但我们把它拿下来了,后续不管我操作这个元素多少次,每一步的操作成本都会非常低。当我们只需要进行很少的 DOM 操作时,DOM 离线化的优越性确实不太明显。一旦操作频繁起来,这“拿掉”和“放回”的开销都将会是非常值得的。

Flush 队列:浏览器并没有那么简单

以我们现在的知识基础,理解上面的优化操作并不难。那么现在我问大家一个问题:

let container = document.getElementById('container')
container.style.width = '100px'
container.style.height = '200px'
container.style.border = '10px solid red'
container.style.color = 'red'

这段代码里,浏览器进行了多少次的回流或重绘呢?

“width、height、border是几何属性,各触发一次回流;color只造成外观的变化,会触发一次重绘。”——如果你立刻这么想了,说明你是个能力不错的同学,认真阅读了前面的内容。那么我们现在立刻跑一跑这段代码,看看浏览器怎么说:

这里为大家截取有“Layout”和“Paint”出镜的片段(这个图是通过 Chrome 的 Performance 面板得到的,后面会教大家用这个东西)。我们看到浏览器只进行了一次回流和一次重绘——和我们想的不一样啊,为啥呢?

因为现代浏览器是很聪明的。浏览器自己也清楚,如果每次 DOM 操作都即时地反馈一次回流或重绘,那么性能上来说是扛不住的。于是它自己缓存了一个 flush 队列,把我们触发的回流与重绘任务都塞进去,待到队列里的任务多起来、或者达到了一定的时间间隔,或者“不得已”的时候,再将这些任务一口气出队。因此我们看到,上面就算我们进行了 4 次 DOM 更改,也只触发了一次 Layout 和一次 Paint。

大家这里尤其小心这个“不得已”的时候。前面我们在介绍回流的“导火索”的时候,提到过有一类属性很特别,它们有很强的“即时性”。当我们访问这些属性时,浏览器会为了获得此时此刻的、最准确的属性值,而提前将 flush 队列的任务出队——这就是所谓的“不得已”时刻。具体是哪些属性值,我们已经在“最容易被忽略的操作”这个小模块介绍过了,此处不再赘述。

小结

整个一节读下来,可能会有同学感到疑惑:既然浏览器已经为我们做了批处理优化,为什么我们还要自己操心这么多事情呢?今天避免这个明天避免那个,多麻烦!

问题在于,并不是所有的浏览器都是聪明的。我们刚刚的性能图表,是 Chrome 的开发者工具呈现给我们的。Chrome 里行得通的东西,到了别处(比如 IE)就不一定行得通了。而我们并不知道用户会使用什么样的浏览器。如果不手动做优化,那么一个页面在不同的环境下就会呈现不同的性能效果,这对我们、对用户都是不利的。因此,养成良好的编码习惯、从根源上解决问题,仍然是最周全的方法。

优化首屏体验——Lazy-Load 初探

首先要告诉大家的是,截止到上个章节,我们需要大家绞尽脑汁去理解的“硬核”操作基本告一段落了。从本节开始,我们会一起去实现一些必知必会、同时难度不大的常用优化手段。

这部分内容不难,但很关键。尤其是近期有校招或跳槽需求的同学,还请务必对这部分内容多加留心,说不定下一次的面试题里就有它们的身影。

Lazy-Load 初相见

Lazy-Load,翻译过来是“懒加载”。它是针对图片加载时机的优化:在一些图片量比较大的网站(比如电商网站首页,或者团购网站、小游戏首页等),如果我们尝试在用户打开页面的时候,就把所有的图片资源加载完毕,那么很可能会造成白屏、卡顿等现象,因为图片真的太多了,一口气处理这么多任务,浏览器做不到啊!

但我们再想,用户真的需要这么多图片吗?不对,用户点开页面的瞬间,呈现给他的只有屏幕的一部分(我们称之为首屏)。只要我们可以在页面打开的时候把首屏的图片资源加载出来,用户就会认为页面是没问题的。至于下面的图片,我们完全可以等用户下拉的瞬间再即时去请求、即时呈现给他。这样一来,性能的压力小了,用户的体验却没有变差——这个延迟加载的过程,就是 Lazy-Load。

现在我们打开掘金首页:

大家留意一栏文章右侧可能会出现的图片,这里咱们给个特写:

大家现在以尽可能快的速度,疯狂向下拉动页面。发现什么?是不是发现我们图示的这个图片的位置,会出现闪动——有时候我们明明已经拉到目标位置了,文字也呈现完毕了,图片却慢半拍才显示出来。这是因为,掘金首页也采用了懒加载策略。当我们的页面并未滚动至包含图片的 div 元素所在的位置时,它的样式是这样的:

我们把代码提出来看一下:

<div data-v-b2db8566="" 
    data-v-009ea7bb="" 
    data-v-6b46a625=""   
    data-src="https://user-gold-cdn.xitu.io/2018/9/27/16619f449ee24252?imageView2/1/w/120/h/120/q/85/format/webp/interlace/1"    
    class="lazy thumb thumb"    
    style="background-image: none; background-size: cover;">  
</div>

我们注意到 style 内联样式中,背景图片设置为了 none。也就是说这个 div 是没有内容的,它只起到一个占位的作用。

这个“占位”的概念,在这个例子里或许体现得不够直观。最直观的应该是淘宝首页的 HTML Preview 效果:

我们看到,这个还没来得及被图片填充完全的网页,是用大大小小的空 div 元素来占位的。掘金首页也是如此。

一旦我们通过滚动使得这个 div 出现在了可见范围内,那么 div 元素的内容就会发生变化,呈现如下的内容:

我们给 style 一个特写:

style="background-image: url(&quot;https://user-gold-cdn.xitu.io/2018/9/27/16619f449ee24252?imageView2/1/w/120/h/120/q/85/format/webp/interlace/1&quot;); background-size: cover;"

可以看出,style 内联样式中的背景图片属性从 none 变成了一个在线图片的 URL。也就是说,出现在可视区域的瞬间,div 元素的内容被即时地修改掉了——它被写入了有效的图片 URL,于是图片才得以呈现。这就是懒加载的实现思路。

一起写一个 Lazy-Load 吧!

基于上面的实现思路,我们完全可以手动实现一个属于自己的 Lazy-Load。

此处敲黑板划重点,Lazy-Load 的思路及实现方式为大厂面试常考题,还望诸位同学引起重视

首先新建一个空项目,目录结构如下:

大家可以往 images 文件夹里塞入各种各样自己喜欢的图片。

我们在 index.html 中,为这些图片预置 img 标签:

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Lazy-Load</title>
  <style>
    .img {
      width: 200px;
      height:200px;
      background-color: gray;
    }
    .pic {
      // 必要的img样式
    }
  </style>
</head>
<body>
  <div class="container">
    <div class="img">
      // 注意我们并没有为它引入真实的src
      <img class="pic" alt="加载中" data-src="./images/1.png">
    </div>
    <div class="img">
      <img class="pic" alt="加载中" data-src="./images/2.png">
    </div>
    <div class="img">
      <img class="pic" alt="加载中" data-src="./images/3.png">
    </div>
    <div class="img">
      <img class="pic" alt="加载中" data-src="./images/4.png">
    </div>
    <div class="img">
      <img class="pic" alt="加载中" data-src="./images/5.png">
    </div>
     <div class="img">
      <img class="pic" alt="加载中" data-src="./images/6.png">
    </div>
     <div class="img">
      <img class="pic" alt="加载中" data-src="./images/7.png">
    </div>
     <div class="img">
      <img class="pic" alt="加载中" data-src="./images/8.png">
    </div>
     <div class="img">
      <img class="pic" alt="加载中" data-src="./images/9.png">
    </div>
     <div class="img">
      <img class="pic" alt="加载中" data-src="./images/10.png">
    </div>
  </div>
</body>
</html>

在懒加载的实现中,有两个关键的数值:一个是当前可视区域的高度,另一个是元素距离可视区域顶部的高度

当前可视区域的高度, 在和现代浏览器及 IE9 以上的浏览器中,可以用 window.innerHeight 属性获取。在低版本 IE 的标准模式中,可以用 document.documentElement.clientHeight 获取,这里我们兼容两种情况:

const viewHeight = window.innerHeight || document.documentElement.clientHeight 

元素距离可视区域顶部的高度,我们这里选用 getBoundingClientRect() 方法来获取返回元素的大小及其相对于视口的位置。对此 MDN 给出了非常清晰的解释:

该方法的返回值是一个 DOMRect 对象,这个对象是由该元素的 getClientRects() 方法返回的一组矩形的集合, 即:是与该元素相关的 CSS 边框集合 。

DOMRect 对象包含了一组用于描述边框的只读属性——left、top、right 和 bottom,单位为像素。除了 width 和 height 外的属性都是相对于视口的左上角位置而言的。

其中需要引起我们注意的就是 left、top、right 和 bottom,它们对应到元素上是这样的:

可以看出,top 属性代表了元素距离可视区域顶部的高度,正好可以为我们所用!

Lazy-Load 方法开工啦!

<script>
    // 获取所有的图片标签
    const imgs = document.getElementsByTagName('img')
    // 获取可视区域的高度
    const viewHeight = window.innerHeight || document.documentElement.clientHeight
    // num用于统计当前显示到了哪一张图片,避免每次都从第一张图片开始检查是否露出
    let num = 0
    function lazyload(){
        for(let i=num; i<imgs.length; i++) {
            // 用可视区域高度减去元素顶部距离可视区域顶部的高度
            let distance = viewHeight - imgs[i].getBoundingClientRect().top
            // 如果可视区域高度大于等于元素顶部距离可视区域顶部的高度,说明元素露出
            if(distance >= 0 ){
                // 给元素写入真实的src,展示图片
                imgs[i].src = imgs[i].getAttribute('data-src')
                // 前i张图片已经加载完毕,下次从第i+1张开始检查是否露出
                num = i + 1
            }
        }
    }
    // 监听Scroll事件
    window.addEventListener('scroll', lazyload, false);
</script>

小结

本节我们实现出了一个最基本的懒加载功能。但是大家要注意一点:这个 scroll 事件,是一个危险的事件——它太容易被触发了。试想,用户在访问网页的时候,是不是可以无限次地去触发滚动?尤其是一个页面死活加载不出来的时候,疯狂调戏鼠标滚轮(或者浏览器滚动条)的用户可不在少数啊!

再回头看看我们上面写的代码。按照我们的逻辑,用户的每一次滚动都将触发我们的监听函数。函数执行是吃性能的,频繁地响应某个事件将造成大量不必要的页面计算。因此,我们需要针对那些有可能被频繁触发的事件作进一步地优化。这里就引出了我们下一节的两位主角——throttle 与 debounce。

事件的节流(throttle)与防抖(debounce)

上一节我们一起通过监听滚动事件,实现了各大网站喜闻乐见的懒加载效果。但我们提到,scroll 事件是一个非常容易被反复触发的事件。其实不止 scroll 事件,resize 事件、鼠标事件(比如 mousemove、mouseover 等)、键盘事件(keyup、keydown 等)都存在被频繁触发的风险。

频繁触发回调导致的大量计算会引发页面的抖动甚至卡顿。为了规避这种情况,我们需要一些手段来控制事件被触发的频率。就是在这样的背景下,throttle(事件节流)和 debounce(事件防抖)出现了。

“节流”与“防抖”的本质

这两个东西都以闭包的形式存在。

它们通过对事件对应的回调函数进行包裹、以自由变量的形式缓存时间信息,最后用 setTimeout 来控制事件的触发频率。

Throttle: 第一个人说了算

throttle 的中心思想在于:在某段时间内,不管你触发了多少次回调,我都只认第一次,并在计时结束时给予响应。

先给大家讲个小故事:现在有一个旅客刚下了飞机,需要用车,于是打电话叫了该机场唯一的一辆机场大巴来接。司机开到机场,心想来都来了,多接几个人一起走吧,这样这趟才跑得值——我等个十分钟看看。于是司机一边打开了计时器,一边招呼后面的客人陆陆续续上车。在这十分钟内,后面下飞机的乘客都只能乘这一辆大巴,十分钟过去后,不管后面还有多少没挤上车的乘客,这班车都必须发走。

在这个故事里,“司机” 就是我们的节流阀,他控制发车的时机;“乘客”就是因为我们频繁操作事件而不断涌入的回调任务,它需要接受“司机”的安排;而“计时器”,就是我们上文提到的以自由变量形式存在的时间信息,它是“司机”决定发车的依据;最后“发车”这个动作,就对应到回调函数的执行。

总结下来,所谓的“节流”,是通过在一段时间内无视后来产生的回调请求来实现的。只要一位客人叫了车,司机就会为他开启计时器,一定的时间内,后面需要乘车的客人都得排队上这一辆车,谁也无法叫到更多的车。

对应到实际的交互上是一样一样的:每当用户触发了一次 scroll 事件,我们就为这个触发操作开启计时器。一段时间内,后续所有的 scroll 事件都会被当作“一辆车的乘客”——它们无法触发新的 scroll 回调。直到“一段时间”到了,第一次触发的 scroll 事件对应的回调才会执行,而“一段时间内”触发的后续的 scroll 回调都会被节流阀无视掉。

理解了大致的思路,我们现在一起实现一个 throttle:

// fn是我们需要包装的事件回调, interval是时间间隔的阈值
function throttle(fn, interval) {
  // last为上一次触发回调的时间
  let last = 0
  
  // 将throttle处理结果当作函数返回
  return function () {
      // 保留调用时的this上下文
      let context = this
      // 保留调用时传入的参数
      let args = arguments
      // 记录本次触发回调的时间
      let now = +new Date()
      
      // 判断上次触发的时间和本次触发的时间差是否小于时间间隔的阈值
      if (now - last >= interval) {
      // 如果时间间隔大于我们设定的时间间隔阈值,则执行回调
          last = now;
          fn.apply(context, args);
      }
    }
}

// 用throttle来包装scroll的回调
document.addEventListener('scroll', throttle(() => console.log('触发了滚动事件'), 1000))

Debounce: 最后一个人说了算

防抖的中心思想在于:我会等你到底。在某段时间内,不管你触发了多少次回调,我都只认最后一次。

继续讲司机开车的故事。这次的司机比较有耐心。第一个乘客上车后,司机开始计时(比如说十分钟)。十分钟之内,如果又上来了一个乘客,司机会把计时器清零,重新开始等另一个十分钟(延迟了等待)。直到有这么一位乘客,从他上车开始,后续十分钟都没有新乘客上车,司机会认为确实没有人需要搭这趟车了,才会把车开走。

我们对比 throttle 来理解 debounce:在throttle的逻辑里,“第一个人说了算”,它只为第一个乘客计时,时间到了就执行回调。而 debounce 认为,“最后一个人说了算”,debounce 会为每一个新乘客设定新的定时器。

我们基于上面的理解,一起来写一个 debounce:

// fn是我们需要包装的事件回调, delay是每次推迟执行的等待时间
function debounce(fn, delay) {
  // 定时器
  let timer = null
  
  // 将debounce处理结果当作函数返回
  return function () {
    // 保留调用时的this上下文
    let context = this
    // 保留调用时传入的参数
    let args = arguments

    // 每次事件被触发时,都去清除之前的旧定时器
    if(timer) {
        clearTimeout(timer)
    }
    // 设立新定时器
    timer = setTimeout(function () {
      fn.apply(context, args)
    }, delay)
  }
}

// 用debounce来包装scroll的回调
document.addEventListener('scroll', debounce(() => console.log('触发了滚动事件'), 1000))

用 Throttle 来优化 Debounce

debounce 的问题在于它“太有耐心了”。试想,如果用户的操作十分频繁——他每次都不等 debounce 设置的 delay 时间结束就进行下一次操作,于是每次 debounce 都为该用户重新生成定时器,回调函数被延迟了不计其数次。频繁的延迟会导致用户迟迟得不到响应,用户同样会产生“这个页面卡死了”的观感。

为了避免弄巧成拙,我们需要借力 throttle 的思想,打造一个“有底线”的 debounce——等你可以,但我有我的原则:delay 时间内,我可以为你重新生成定时器;但只要delay的时间到了,我必须要给用户一个响应。这个 throttle 与 debounce “合体”思路,已经被很多成熟的前端库应用到了它们的加强版 throttle 函数的实现中:

// fn是我们需要包装的事件回调, delay是时间间隔的阈值
function throttle(fn, delay) {
  // last为上一次触发回调的时间, timer是定时器
  let last = 0, timer = null
  // 将throttle处理结果当作函数返回
  
  return function () { 
    // 保留调用时的this上下文
    let context = this
    // 保留调用时传入的参数
    let args = arguments
    // 记录本次触发回调的时间
    let now = +new Date()
    
    // 判断上次触发的时间和本次触发的时间差是否小于时间间隔的阈值
    if (now - last < delay) {
    // 如果时间间隔小于我们设定的时间间隔阈值,则为本次触发操作设立一个新的定时器
       clearTimeout(timer)
       timer = setTimeout(function () {
          last = now
          fn.apply(context, args)
        }, delay)
    } else {
        // 如果时间间隔超出了我们设定的时间间隔阈值,那就不等了,无论如何要反馈给用户一次响应
        last = now
        fn.apply(context, args)
    }
  }
}

// 用新的throttle包装scroll的回调
document.addEventListener('scroll', throttle(() => console.log('触发了滚动事件'), 1000))

小结

throttle 和 debounce 不仅是我们日常开发中的常用优质代码片段,更是前端面试中不可不知的高频考点。“看懂了代码”、“理解了过程”在本节都是不够的,重要的是把它写到自己的项目里去,亲自体验一把节流和防抖带来的性能提升。

Performance、LightHouse 与性能 API

性能监测是前端性能优化的重要一环。监测的目的是为了确定性能瓶颈,从而有的放矢地开展具体的优化工作。

平时我们比较推崇的性能监测方案主要有两种:可视化方案、可编程方案。这两种方案下都有非常优秀、且触手可及的相关工具供大家选择,本节我们就一起来研究一下这些工具的用法。

可视化监测:从 Performance 面板说起

Performance

Chrome
提供给我们的开发者工具,用于记录和分析我们的应用在运行时的所有活动。它呈现的数据具有实时性、多维度的特点,可以帮助我们很好地定位性能问题。

开始记录

右键打开开发者工具,选中我们的
Performance
面板:

当我们选中图中所标示的实心圆按钮,Performance
会开始帮我们记录我们后续的交互操作;当我们选中圆箭头按钮,Performance
会将页面重新加载,计算加载过程中的性能表现。
tips:使用
Performance
工具时,为了规避其它
Chrome
插件对页面的性能影响,我们最好在无痕模式下打开页面:

简要分析

这里我打开掘金首页,选中 Performance 面板中的圆箭头,来看一下页面加载过程中的性能表现:

从上到下,依次为概述面板、详情面板。下我们先来观察一下概述面板,了解页面的基本表现:

我们看右上角的三个栏目:FPS、CPU 和 NET。

FPS:这是一个和动画性能密切相关的指标,它表示每一秒的帧数。图中绿色柱状越高表示帧率越高,体验就越流畅。若出现红色块,则代表长时间帧,很可能会出现卡顿。图中以绿色为主,偶尔出现红块,说明网页性能并不糟糕,但仍有可优化的空间。

CPU:表示CPU的使用情况,不同的颜色片段代表着消耗CPU资源的不同事件类型。这部分的图像和下文详情面板中的Summary内容有对应关系,我们可以结合这两者挖掘性能瓶颈。

NET:粗略的展示了各请求的耗时与前后顺序。这个指标一般来说帮助不大。

挖掘性能瓶颈

详情面板中的内容有很多。但一般来说,我们会主要去看 Main 栏目下的火焰图和 Summary 提供给我们的饼图——这两者和概述面板中的 CPU 一栏结合,可以帮我们迅速定位性能瓶颈(如下图)。

先看 CPU 图表和 Summary 饼图。CPU 图表中,我们可以根据颜色填充的饱满程度,确定 CPU 的忙闲,进而了解该页面的总的任务量。而 Summary 饼图则以一种直观的方式告诉了我们,哪个类型的任务最耗时(从本例来看是脚本执行过程)。这样我们在优化的时候,就可以抓到“主要矛盾”,进而有的放矢地开展后续的工作了。

再看 Main 提供给我们的火焰图。这个火焰图非常关键,它展示了整个运行时主进程所做的每一件事情(包括加载、脚本运行、渲染、布局、绘制等)。x 轴表示随时间的记录。每个长条就代表一个活动。更宽的条形意味着事件需要更长时间。y 轴表示调用堆栈,我们可以看到事件是相互堆叠的,上层的事件触发了下层的事件。

CPU 图标和 Summary 图都是按照“类型”给我们提供性能信息,而 Main 火焰图则将粒度细化到了每一个函数的调用。到底是从哪个过程开始出问题、是哪个函数拖了后腿、又是哪个事件触发了这个函数,这些具体的、细致的问题都将在 Main 火焰图中得到解答。

可视化监测: 更加聪明的 LightHouse

Performance 无疑可以为我们提供很多有价值的信息,但它的展示作用大于分析作用。它要求使用者对工具本身及其所展示的信息有充分的理解,能够将晦涩的数据“翻译”成具体的性能问题。

程序员们许了个愿:如果工具能帮助我们把页面的问题也分析出来就好了!上帝听到了这个愿望,于是给了我们 LightHouse:

Lighthouse 是一个开源的自动化工具,用于改进网络应用的质量。 你可以将其作为一个 Chrome 扩展程序运行,或从命令行运行。 为Lighthouse 提供一个需要审查的网址,它将针对此页面运行一连串的测试,然后生成一个有关页面性能的报告。

敲黑板划重点:它生成的是一个报告!Report!不是干巴巴地数据,而是一个通过测试与分析呈现出来的结果(它甚至会给你的页面跑一个分数出来)。这个东西看起来也真是太赞了,我们这就来体验一下!

首先在 Chrome 的应用商店里下载一个 LightHouse。这一步 OK 之后,我们浏览器右上角会出现一个小小的灯塔 ICON。打开我们需要测试的那个页面,点击这个 ICON,唤起如下的面板:

然后点击“Generate report”按钮,只需静候数秒,LightHouse 就会为我们输出一个完美的性能报告。

这里我拿掘金小册首页“开刀”:

稍事片刻,Report 便输出成功了,LightHouse 默认会帮我们打开一个新的标签页来展示报告内容。报告内容非常丰富,首先我们看到的是整体的跑分情况:

上述分别是页面性能、PWA(渐进式 Web 应用)、可访问性(无障碍)、最佳实践、SEO 五项指标的跑分。孰强孰弱,我们一看便知。

向下拉动 Report 页,我们还可以看到每一个指标的细化评估:

在“Opportunities”中,LightHouse 甚至针对我们的性能问题给出了可行的建议、以及每一项优化操作预期会帮我们节省的时间。这份报告的可操作性是很强的——我们只需要对着 LightHouse 给出的建议,一条一条地去尝试,就可以看到自己的页面,在一秒一秒地变快。

除了直接下载,我们还可以通过命令行使用 LightHouse:

npm install -g lighthouse
lighthouse https://juejin.im/books

同样可以得到掘金小册的性能报告。

此外,从 Chrome 60 开始,DevTools 中直接加入了基于 LightHouse 的 Audits 面板:

LightHouse 因此变得更加触手可及了,这一操作也足以证明 Chrome 团队对 LightHouse 的推崇。

可编程的性能上报方案: W3C 性能 API

W3C 规范为我们提供了 Performance 相关的接口。它允许我们获取到用户访问一个页面的每个阶段的精确时间,从而对性能进行分析。我们可以将其理解为 Performance 面板的进一步细化与可编程化。

当下的前端世界里,数据可视化的概念已经被炒得非常热了,Performance 面板就是数据可视化的典范。那么为什么要把已经可视化的数据再掏出来处理一遍呢?这是因为,需要这些数据的人不止我们前端——很多情况下,后端也需要我们提供性能信息的上报。此外,Performance 提供的可视化结果并不一定能够满足我们实际的业务需求,只有拿到了真实的数据,我们才可以对它进行二次处理,去做一个更加深层次的可视化。

在这种需求背景下,我们就不得不祭出 Performance API了。

访问 performance 对象

performance 是一个全局对象。我们在控制台里输入 window.performance,就可一窥其全貌:

关键时间节点

在 performance 的 timing 属性中,我们可以查看到如下的时间戳:

这些时间戳与页面整个加载流程中的关键时间节点有着一一对应的关系:

通过求两个时间点之间的差值,我们可以得出某个过程花费的时间,举个

标签:缓存,浏览器,DOM,前端,渲染,笔记,JS,优化,我们
From: https://www.cnblogs.com/KooTeam/p/18654044

相关文章

  • [数据结构学习笔记5] 队列(Queue)
    队列和堆栈类似,但是它是一种先进先出的结构。FIFO(firstinfirstout)。代码实现,javascriptclassQueue{constructor(){this.items=newLinkedList();}clear(){this.items=newLinkedList();}contains(item){......
  • 线段树合并学习笔记
    前言模拟赛solution里说只需要利用线段树合并的思想……但是我不会线段树合并,就先学习了线段树合并。引入线段树合并是把每个对应节点合并。两棵线段树都有某个节点,就是把这两个点合成一个点;只有一棵线段树有某个节点,合并出来的线段树的这个节点就是这个唯一的节点。......
  • AAAT 笔记(P56491)
    实际上去掉主函数不长于线段树3。原理还没写#include<bits/stdc++.h>usingnamespacestd;#defineintlonglong#defineendl"\n"constintmaxn=4e5+5,INF=1e12;structtag{ intk,b; tag(intx=1,inty=0){k=x,b=y;}}rtag[maxn],vtag[maxn];structnode{ intmn......
  • SQLite 调试与性能优化指南
    在前几篇文章中,我们深入了解了SQLite的基础和高级功能,以及如何利用其扩展能力。本篇文章将重点讲解SQLite的调试工具和性能优化技巧,以帮助您解决常见问题并进一步提升数据库性能。常见问题及解决方法SQLite的轻量级特性使其非常易用,但在某些场景下可能会遇到以下常......
  • 有哪些方法可以禁止别人调试自己的前端代码?
    禁止别人调试自己的前端代码是一个具有挑战性的任务,因为前端代码在客户端执行,用户总有一定的访问和修改权限。然而,你可以采取一些措施来增加调试的难度或减少调试的可能性。以下是一些建议的方法:代码混淆:使用工具如Obfuscator等来混淆你的JavaScript代码。这可以将变量名、函......
  • LFS 笔记
    简介一直想知道一个发行版的代码是怎么构成的,这个项目可以带我们自己构建一个Linux发行版,并且可以运行.您可能有许多阅读本书的理由。许多人首先会问:“为什么要不辞辛苦地手工从头构建一个Linux系统,而不是直接下载并且安装一个现成的?”LFS项目存在的一项重要原因是,它能......
  • 笔记 HarmonyOS:ArkTS-回顾
    1.声明式UI开发:2.组件语法容器组件(参数){内容}.属性1().属性2().属性...()普通组件(参数).属性1().属性2().属性...() 3.typeof运算符functionfunc(){numb:Number}classPerson{name:string='Tom'}@Entry@ComponentstructTypeofPage{......
  • 基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
    1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)figureplot(Error2,'linewidth',2);gridonxlabel('迭代次数');ylabel('遗传算法优化过程');legend('Averagefitness......
  • 线段树优化建图
    更新日志2025/01/05:开工。概念利用线段树优化建图。一般情况下,会出现点和区间或区间和区间连边的情况,就可以考虑线段树优化建图了。思路开两棵线段树,一棵储存入边,一棵储存出边。每个节点都代表对应的区间。入树中每个点都指向其子节点,出树中相反。区间连边时,在对应线......
  • STM32-笔记36-ADC(模拟/数字转换器)
    一、什么是ADC?        全称:Analog-to-DigitalConverter,指模拟/数字转换器。        ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁。12位ADC是一种逐次逼近型模拟数字转换器(0~4095(2^12))。它有多达18个......