首页 > 其他分享 >The First Chapter

The First Chapter

时间:2024-12-28 21:40:52浏览次数:6  
标签:Chapter infty psi partial int frac hbar First

Introduction to quantum mechanics

the quantum mechanics is very fascinating,no baby can truly say they really understand it,and it is counterintuitive

There were once three unuexplainable experiments

  1. Blackbody spectrum
  2. Photoelectric effect
  3. Bright line spectra

To explore them,the scientists found the quantum mechanics

The domain of quantum mechanics

There are something different between classical mechanics and quantum mechanics

classical quantum
certain uncertain
predictable predictable
determine everything probability

When does quantum mechanics apply?

  • when angular momentum \(L\)~\(\hbar\)
  • when uncertainties \(\Delta p\Delta x\)~\(\hbar\)
  • when uncertainties \(\Delta E \Delta t\)~\(\hbar\)
  • when action \(S\)~\(\hbar\)

\(\hbar=1.05457148 × 10^{-34} kg m^2/s\)

Key concepts in quantum mechanics

The wavefunction

about its properties:

  • complex function
  • describe state of system
  • gives probabilities

it has two part:real part of \(\psi\) and imaginary part of \(\psi\)

In math,the \(\psi^2\) is density function

In physical,the \(\psi\) is related to the probability of finding the partical at a particular point in space

Operators

it connect \(\psi\) to observables

  • \(\hat{x}=x*\psi(x)\)
  • \(\hat{p}=-\hbar \frac{d\psi(x)}{dx}\)

and we should know \(\hat{p}\psi\) is not "the momentum of \psi"

The Schrodinger equation

\[i\hbar \frac{\partial \psi}{\partial t}=\hat{H}\psi=(\hat{KE}+\hat{V})\psi=-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2}+V \]

\(\hat{H}\) is Hamiltonian energy operator

\(\\\)
the common form

\[i\hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2}+V \]

Quantum mechanics concept map

Complex number

Basic definition

complex number \(z=a+bi\)
\(i=\sqrt {-1} \\ i^2=-1\)

  • the real parts \(Re(z)=a\)
  • the Imaginary parts \(Im(z)=b\)

Complex exponentials

\[e^{i\theta}=cos\theta+isin\theta \]

Polar form

\[x+i*y=\displaystyle\sqrt{x^2+y^2}(cos\theta+isin\theta)=Re^{i\theta} \]

Basic operations

  1. Addition (and subtraction):
    (a+i*b)+(c+id)=(a+c)+i(b+d)
  2. Multiplication(distribute):
    (a+ib)(c+id)=(ac-bd)+i(ad+bc)
  3. Division:
    \(\frac{a+ib}{c+id}=\frac{a+ib}{c+id}\frac{c-id}{c-id}=\frac{(ac+bd)+i(bc-ad)}{c^2+d^2}\)

The polar form obeys exponential operations as you know

Magnitudes

Complex conjugate
\((a+bi)^{*}=a-bi\)
Squared magnitude(always real,positive):
\(|z|^{2}=zz^{*}=Re(z)^2+Im(z)^2\)

Geometric interpretation

Complex plane

The complex plane has the imaginary numbers as the real numbers as the x-axis and the y-axis

for example: z=3+4i
In the complex plane,the coordinates are (3,4)
so the \(|z|=\sqrt{(3)^2+{4}^2}=5\),\(z^{*}=3-4i\) and its coordinates are (3,-4)

the polar form in complex in complex plane

\(z=Re^{i\theta}\)
\(\\\)
\(tan\theta=\frac{Im(z)}{Re(z)}\)
\(\\\)
\(R=|z|\)

Complex functions

\(f(z)=f_real (z)+f_imag (z)i=f_real(Re(z),Im(z))+if_imag(Re(z),Im(z))\)

Probability in quantum mechanics

density function p(x)

\(|\psi(x)|^2\) is a p(x) of find the particle

\(P\)(Particle is between a and b)\(=\int_a^{b}|\psi(x)|^2dx\)

but in a particular x_0 ,p(x_0)=0

what does it mean

the \(|\psi|^2\) will change after measuring

there are some interpretations about it

  • the wavefunction collabses after measuring

  • the particle was at c all along
    it has been proved to be wrong

  • the universe split(interesting)

Probability distributions and their properties

Discrete probability

for the particular date,its probability is
the number of date/sum of number of the date

for example 1 2 3 1 2 3 3 3

the probability of 3 is \(\frac{4}{8}=\frac{1}{2}\)

most probably(mode)

Mode is the number that appears most frequently

in that example,3 is the mode

median

if the number of date is even, the median is the average of two middle value

if odd,the median is the average of the middle value

Expectation value

\[E(X)=\sum_i x_ip(x=x_i) \]

expectation value of \(f(x)\)

\[<f>=\sum_if(x_i)p(x=x_i) \]

Continuous probability

it obey the probaility density p(x),at any particular point,like p(x=1)=0

\[p(a<x\leq b)=\int_a^{b}p(x)dx \\ \int_{-\infty}^{\infty}p(x)dx=1 \]

Most prbably(mode)

in any exact value,p(x)=0,so there is no n mode

Median

\[\int_{-\infty}{median}p(x)dx=0.5 \]

Expectation value

\[E(x)=\int_{-\infty}{\infty}xp(x)dx \]

expectation value of f(x)
=\int_{-\infty}{\infty}f(x)p(x)dx

Variance and standard deviation

the broadness of a distribution is called the variance

\(\Delta x=x-<x>\)
\(D(x)=<\Delta x^2>=\sigma^2\)
D(x) is variance

variance formulation

variance \(D(x)\) is equal to \(<x^2>-<x>^2\)

proof:
before proof,you should know:

\(E(ax)=aE(x)\)
\(\\\)
\(E(ax+b)=E(ax)+b\)

when p(x) is discrete:

\[D(x)=E((x-E(x))^2)=E(x^2+E(x)^2-2xE(x))=E(x^2)+E(x)^2-2E(x)E(x)=E(x^2)-E(x)^2 \]

when p(x) is continous:

\[<\Delta x^2 >=\int \Delta x^2p(x)dx =\int (x-<x>)^2p(x)dx=\int(x^2-2x<x>+<x>^2)p(x)dx=\int x^2p(x)dx-\int2x<x>p(x)dx+\int<x>^2p(x)dx=<x^2>-2<x><x>+<x>^2=<x^2>-<x>^2 \]

Probability normalization and \(\psi\)

Normalization

Probability density p(x)
\(\int_{-\infty}^{\infty}p(x)dx=1\)
\(P(a<x<b)=\int_a^{b}p(x)dx\)

Wavefunction

\(\int_{-\infty}^{\infty}|\psi(x)|^2dx=1\)
\(P\)(particle is between a and b)\(=\int_a^{b}|\psi(x)|^2dx\)

to be normalizable

  • \(\psi\) must be square-integrable
    \(\int{-\infty}^{\infty}|\psi|^2dx\) is finite
  • \(\displaystyle\lim_{x \to \infty} \psi=0\)

Time evolution

\(\frac{d\int|\psi(x,t)|^2dx}{dt}=\int \frac{\partial|\psi(x,t)|^2}{\partial t}dx =\int\frac{\partial(\psi ^{*}\psi)}{\partial t}dx=\int(\frac{\partial \psi*}{\partial t}\psi+\psi^{*}\frac{\partial \psi}{\partial t})dx\)

give the schrodinger equation

\[i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial \psi}{\partial x^2}+V\psi \]

\(\\\)
so

\[\frac{\partial\psi}{\partial t}=-\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}-iV\frac{\psi}{\hbar} \\ \frac{\partial\psi^{*}}{\partial t}=-\frac{\hbar}{2m}\frac{\partial^{2} \psi^{*}}{\partial x^2}+iV\frac{\psi^{*}}{\hbar} \]

then
\( \int(\frac{\partial \psi*}{\partial t}\psi+\psi^{*}\frac{\partial \psi}{\partial t})dx=\int((-\frac{\hbar}{2m}\frac{\partial^2 \psi^*}{\partial x^2}+iV\frac{\psi^{*}}{\hbar})\psi+\psi^{*}(-\frac{\hbar}{2m}\frac{\partial^2 \psi}{\partial x^2}-iV\frac{\psi}{\hbar})dx=\frac{i\hbar}{2m}\int -\frac{\partial^2\psi^*}{\partial x^2}\psi+\psi^*\frac{\partial^2\psi}{\psi x^2}dx \)
at the end

\(\int_{-\infty}^{\infty}|\psi(x)|^2dx=frac{d\int|\psi(x,t)|^2dx}{dt}=\frac{i\hbar}{2m}\int -\frac{\partial^2\psi^*}{\partial x^2}\psi+\psi^*\frac{\partial^2\psi}{\psi x^2}dx=\int_{-\infty}^{\infty} \frac{\partial}{\partial x}(\psi^*\frac{\partial \psi}{\partial x}-\frac{\psi^*}{\partial x}\psi)dx=\frac{i\hbar}{2m}(\psi^*\frac{\partial \psi}{\partial x}-\frac{\psi^*}{\partial x}\psi)|_{-\infty}^{\infty} \)

due to\(\displaystyle\lim_{x \to \pm\infty} \psi=0\)

\[\frac{i\hbar}{2m}(\psi^*\frac{\partial \psi}{\partial x}-\frac{\psi^*}{\partial x}\psi)|_{-\infty}^{\infty}=0 \\ \frac{d}{dt}\int_{-\infty}^{\infty}|\psi(x)|^2dx=\frac{d\int|\psi(x,t)|^2dx}{dt}=0 \]

\(\int_{-\infty}^{\infty}|\psi(x)|^2dx=constant\)
so the time evolution does not affected normalization

Motion ,repeated measurement

Can we predicat motion in quantum mechanics?
yes ,we can know how the center of probability distribution,the center of wave function move

\(<x>=\int_{\infty}^{\infty}\psi^*x\psi dx\)
then
\(\frac{d}{dt}<x>=\frac{d}{dt}\int_{-\infty}^{\infty}x\psi(x,t)^*\psi(x,t) dx=\int x\frac{\partial}{\partial t}\psi^*\psi dx=\frac{i \hbar}{2m}\int x\frac{\partial}{\partial x}(\psi^*\frac{\partial \psi}{\psi x}-\frac{\partial \psi*}{\partial x}{\psi})dx=\frac{i\hbar}{2m}(x(\psi^*\frac{\partial \psi}{\psi x}-\frac{\partial \psi*}{\partial x}{\psi})|_{-\infty}^{\infty}-\int(\psi^*\frac{\partial \psi}{\psi x}-\frac{\partial \psi*}{\partial x}{\psi})dx)=\frac{i\hbar}{2m}\int\psi^*\frac{\partial \psi}{\psi x}dx-\int\psi\frac{\partial \psi*}{\partial x}dx=\frac{\hbar}{m}\int \psi*\frac{\partial \psi}{\partial x} dx=<\hat{v}>\)

Expectation value of operators

  • \(<\hat{v}>=-\frac{ih}{m}\int \psi^*\frac{\partial \psi}{\psi x}dx \)

  • \(<\hat{p}>=\int \psi^*(-i\hbar \frac{\partial}{\partial x})\psi\)

  • \(<\hat{x}>=\int \psi^*(x)\psi dx\)

operators:

\[\hat{x}=x*sth \\ \hat{v}=-\frac{i\hbar}{m}\frac{\partial sth}{\partial x} \\ \hat{T}=-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}sth \\ \]

In general

\[<\hat{Q}>=\int \psi^*\hat{Q}\psi dx \]

Q=something with \(\hat{x}\)..\(\hat{T}\)...

An introduction to the uncertainty principle

Position and wavelength

According to the Fourier transform
,$\Delta x \Delta\lambda \geq 1 $

Matter waves(Debroglie)

how do these wave come into quantum mechanics

we all know the three formulations

  • \(E=mc^2\).....1
  • \(E=hf\)......2
  • \(c=f\lambda\).....3

if 1 and 2 describe the wave,\(mc^2=hf\)
then \(mc^2=h\frac{c}{\lambda}\)

\(mc=\frac{h}{\lambda}\)

we can consider the \(mc\) as momentum when velocity is \(c\)(c is equal to the speed of light)

so \(p=\frac{h}{\lambda}\)

it is also true for matter

Position-momentum uncertainty

through \(p=\frac{h}{\lambda},\Delta \lambda \Delta x \geq 1\)

we get \(\Delta p \Delta x \geq \frac{\hbar}{2}\)

Energy-time uncertainy

\(\Delta p \Delta x \geq \frac{\hbar}{2}\)

\(\Delta p\) is related to the wavelength,which is the frequence of wave in space
\(\Delta x\) is related to space

Make an analogy

\(\Delta E \Delta t \geq \frac{\hbar}{2}\)

$\Delta E $ is related to frequence of wave in time
\(\Delta t\) is related to time

Summary

Within the initial chapter, we obtain a fleeting view of quantum mechanics.Therefore, in the subsequent chapters, we will delve deeper into the details of it, with the aim of constructing a solid foundation in the field of quantum mechanics.

标签:Chapter,infty,psi,partial,int,frac,hbar,First
From: https://www.cnblogs.com/guiyou/p/18628801

相关文章

  • nom::sequence::preceded Matches an object from the first parser and discards it,
    nom::sequence::precededMatchesanobjectfromthefirstparseranddiscardsit,thengetsanobjectfromthesecondparser.上面是rustnom官网对于preceded的解释UUUUUUUUU你完全正确,nom::sequence::preceded的定义确实是:Matchesanobjectfromthefirstparse......
  • Chapter 14. Measure Success
    ThesuccessofAIisperceiveddifferentlybyvariousgroupswithinorganizations.AIexpertstypicallydefinesuccessasthecreationofsophisticatedAIsolutionsandhigh-accuracymodels.Incontrast,executivesprioritizefinancialgainsandcostsav......
  • Chapter 13 Build or Buy
    ManyorganizationstodaystartbyhiringateamofdatascientiststoimplementAI.Yet,thisisnottheonlywayofbringingyourAIvisiontolife,norisitthemostcost-effective,especiallywhenyou’rejustgettingstarted.differentstrategiesfor......
  • Chapter 5. How AI can improve Business Process
    AIcanimproveBusinessProcess(customerservice&HR)CustomerServiceWorkloadReduction:Employeeburnoutisasignificantissueincustomerservice.AIAssistants:VirtualAIassistantscandecreasesupportrequestvolumebyproviding24/7suppo......
  • Chapter 10-11-12. Find AI Opportunities - 4 Stages
    WhoseJobisAIIt’scommonformanagementteamstoassumethatdatascientistsinherentlyknowwhichproblemstosolveforthecompany.However,thisbottom-upapproachtoAIrarelyleadstomeaningfulresults.WhiledatascientistsandMLengineerscan......
  • Chapter 8, 9 B-CIDS: 5 pillars of AI preparation → Jumpstart Approach
    B-CIDSAI-Readiness:AcompanyisAI-readywhenitcansmoothlyprogressfromAIconcepttoimplementationandbenefitrealization,anddosoconsistently.Preparation:AchievingAI-readinessisacomprehensiveprocessinvolvingcompanyculture,talent,......
  • Chapter 6 Optimize decision making with AI - Simple versus Intelligent Data Anal
    decisionmaking≈datadrivendecisionmakingData-drivendecision-makingreferstoleveragingaggregatedandsummarizeddatatodrivecriticaldecisions.Thedataservesasacompass,allowingyoutorefineyour“gutfeeling”andminimizebiasinyourde......
  • chapter 2: The Promise of AI
    AIEliminatesInefficienciesAIcansignificantlyreduceinefficienciesinvarioussectorsbyautomatingtediousandtime-consumingtasks.Forinstance,duringtheearlydaysoftheCOVID-19pandemic,manyfreelancersonUpworkfellvictimtocheckscams......
  • 计算机组成原理-Chapter2
    Chapter2数据表达和MIPS汇编语言2.1二进制表示方法        针对于有符号整数,可以使用原码、补码和反码的方式进行表示。2.1.1反码与原码        对于一个数的有符号数,若其为正数则反码为其本身。例如正数0001的反码为0001与之前保持一致;负数1001......
  • Chapter 1. ACI 概述
    目录一、ACI是什么?二、ACI优势架构方面管理方面策略与应用方面总结一、ACI是什么?ACI全称是ApplicationCentricInfrastructure,即应用为中心的网络架构,是思科的一款软件定义网络(SDN)解决方案。APIC控制器(ApplicationPolicyInfrastructureController)作为控制......