首页 > 其他分享 >InnoDB存储引擎

InnoDB存储引擎

时间:2024-12-28 19:26:36浏览次数:3  
标签:存储 快照 log 事务 引擎 InnoDB 磁盘 日志

  6.1 逻辑存储结构

InnoDB的逻辑存储结构如下图所示:

312ed1078c324a3299e8a28b4ec469a1.png

6.2 架构

6.2.1 概述

MySQL5.5 版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

df326ba40baf4659982a9a9082004139.png

6.2.2 内存结构

13f0a4895c6443ccbf4164501a4ddf1c.png

在左侧的内存结构中,主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。 接下来介绍一下这四个部分。

1). Buffer Pool 缓冲池

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及 InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  • free page:空闲page链表,未被使用。

  • clean page:被使用page链表,数据没有被修改过。

  • dirty page:脏页,被使用page链表,数据被修改过,也中数据与磁盘的数据产生了不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池 。参数设置: show variables like 'innodb_buffer_pool_size';

af658493c59642d6b437add116e8d573.png

2). Change Buffer

Change Buffer,更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page 没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer 中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再将合并后的数据刷新到磁盘中。

Change Buffer的意义是什么呢?

先来看一幅图,这个是二级索引的结构图:

d6fba464afeb4853aa89cf26acd1ba7b.png

对于聚集索引如主键索引,通常来说是按照主键顺序插入的,那么就会顺序操作磁盘IO。与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO,并且是随机的磁盘IO。有了 ChangeBuffer之后,不用每一次都操作磁盘IO,先去操作Change Buffer,再以一定频率同步到Buffer Pool,再刷新到磁盘当中。减少了磁盘IO,提高了效率。

3). Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持 hash索引,但是给我们提供了一个功能就是这个自适应hash索引。因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等,只适合做等值匹配的操作。

InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度, 则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成。

参数: adaptive_hash_index

4). Log Buffer

Log Buffer:日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log), 默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

参数:

innodb_log_buffer_size:缓冲区大小

innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

  • 1: 日志在每次事务提交时写入并刷新到磁盘,默认值。

  • 0: 每秒将日志写入并刷新到磁盘一次。

  • 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。

6457da18ea884f5ba67b62a090b90984.png

6.2.3 磁盘结构

接下来,再来看看InnoDB体系结构的右边部分,也就是磁盘结构:

30c945c22dde45e2892311e333e6d647.png

1). System Tablespace 系统表空间

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)。

参数:innodb_data_file_path

29bd6da0d38e41e69816f65fb675056c.png

系统表空间,默认的文件名叫 ibdata1。

2). File-Per-Table Tablespaces 每个表文件空间

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。

开关参数:innodb_file_per_table ,该参数默认开启。

4b0ba5972e004a5cb64874a5b30681b4.png

那也就是说,我们每创建一个表,都会产生一个表空间文件,如图:

bea50ce52cde4d0ea5466221e92ffce7.png

3). General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

A. 创建表空间

CREATE TABLESPACE ts_name ADD DATAFILE 'file_name' ENGINE = engine_name;

0d89022ef23340bb9533e625ae7021b4.png

B. 创建表时指定表空间

CREATE TABLE xxx ... TABLESPACE ts_name;

92bde397e9264dde943f85001167b3c5.png

4). Undo Tablespaces

撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储 undo log日志。

5). Temporary Tablespaces

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

6). Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

670a993d94a247fb804c66e0ac10f9b5.png

7). Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log), 前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

以循环方式写入重做日志文件,涉及两个文件:

c6b292498a27456f98b152a142d49b5a.png

前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

55eb46b349fe48d69cf62e247c8d617d.png

6.2.4 后台线程

作用:将InnoDB存储引擎的缓冲池当中的数据在合适的时机刷新到磁盘文件当中。

c48fb2d09cf847b2a9127917851d7f15.png

在InnoDB的后台线程中,分为4类,分别是:Master Thread 、IO Thread、Purge Thread、 Page Cleaner Thread。

1). Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收 。

2). IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

我们可以通过以下的这条指令,查看到InnoDB的状态信息,其中就包含IO Thread信息。

show engine innodb status \G;

06101a0106c74033a12a48ded013516a.png

3). Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

4). Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

6.3 事务原理

6.3.1 事务基础

1). 事务

事务 是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系 统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

2). 特性ACID

  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

那实际上,我们研究事务的原理,就是研究MySQL的InnoDB引擎是如何保证事务的这四大特性的。

69569757066d42c8a2656a30a980d568.png

而对于这四大特性,实际上分为两个部分。 其中的原子性、一致性、持久化,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的锁,加上MVCC来保证的。

0b37d0271a2d4688a6a168e7bb9a9075.png

我们在讲解事务原理的时候,主要就是来研究一下redolog,undolog以及MVCC。

6.3.2 redo log

重做日志,记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。

该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都存到该日志文件中, 用于在刷新脏页到磁盘,发生错误时, 进行数据恢复使用。

如果没有redolog,可能会存在什么问题的?我们一起来分析一下。

我们知道,在InnoDB引擎中的内存结构中,主要的内存区域就是缓冲池,在缓冲池中缓存了很多的数据页。 当我们在一个事务中,执行多个增删改的操作时,InnoDB引擎会先操作缓冲池中的数据,如果缓冲区没有对应的数据,会通过后台线程将磁盘中的数据加载出来,存放在缓冲区中,然后将缓冲池中的数据修改,修改后的数据页我们称为脏页。 而脏页则会在一定的时机,通过后台线程刷新到磁盘 中,从而保证缓冲区与磁盘的数据一致。 而缓冲区的脏页数据并不是实时刷新的,而是一段时间之后将缓冲区的数据刷新到磁盘中,假如刷新到磁盘的过程出错了,而提示给用户事务提交成功,而数据却没有持久化下来,这就出现问题了,没有保证事务的持久性。

8b6cadd08acc402d8b9bb8fd240c4b86.png

那么,如何解决上述的问题呢? 在InnoDB中提供了一份日志 redo log,接下来我们再来分析一 下,通过redolog如何解决这个问题。

1dd6103ad4dc42d9b06ffe20ec10f37a.png

有了redolog之后,当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化,记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。 过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助于redo log进行数据恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘或者涉及到的数据已经落盘,此时redolog就没有作用了,就可以删除了,所以存在的两个redolog文件是循环写的。

那为什么每一次提交事务,要刷新redo log 到磁盘中呢,而不是直接将buffer pool中的脏页刷新到磁盘呢 ?

因为在业务操作中,我们操作数据一般都是随机读写磁盘的,而不是顺序读写磁盘。 而redo log在 往磁盘文件中写入数据,由于是日志文件,所以都是顺序写的。顺序写的效率,要远大于随机写。 这种先写日志的方式,称之为 WAL(Write-Ahead Logging)。

6.3.3 undo log

回滚日志,用于记录数据被修改前的信息 , 作用包含两个 : 提供回滚(保证事务的原子性) 和 MVCC(多版本并发控制) 。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的 update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。

Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment 回滚段中,内部包含1024个undo log segment。

6.4 MVCC

高频面试考点

6.4.1 基本概念

1). 当前读

读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于我们日常的操作,如:select ... lock in share mode(共享锁),select ... for update、update、insert、delete(排他锁)都是一种当前读。

测试:

b62f826c5e0b498f84cff63fdc8d4151.png

在测试中我们可以看到,即使是在默认的RR隔离级别下,事务A中依然可以读取到事务B最新提交的内容,因为在查询语句后面加上了 lock in share mode 共享锁,此时是当前读操作。当然,当我们加排他锁的时候,也是当前读操作。

2). 快照读

简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

Read Committed:每次select,都生成一个快照读。

Repeatable Read:开启事务后第一个select语句才是快照读的地方。

Serializable:快照读会退化为当前读。

测试:

74ddffbaafa44ffb989a5acc223a8a28.png

在测试中,我们看到即使事务B提交了数据,事务A中也查询不到。 原因就是因为普通的select是快照读,而在当前默认的RR隔离级别下,开启事务后第一个select语句才是快照读的地方,后面执行相同 的select语句都是从快照中获取数据,可能不是当前的最新数据,这样也就保证了可重复读。

3). MVCC

全称 Multi-Version Concurrency Control,多版本并发控制。指维护一个数据的多个版本, 使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。

MVCC作用:在快照读的时候要通过MVCC来查找对应的历史版本。

MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

接下来,我们再来介绍一下InnoDB引擎的表中涉及到的隐藏字段 、undolog 以及 readview,从而来介绍一下MVCC的原理。

6.4.2 隐藏字段

dc7b08d0121e49aa9d7ff62b853f8c37.png

当我们创建了上面的这张表,我们在查看表结构的时候,就可以显式的看到这三个字段。 实际上除了这三个字段以外,InnoDB还会自动的给我们添加三个隐藏字段及其含义分别是:

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版 本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

而上述的前两个字段是肯定会添加的, 是否添加最后一个字段DB_ROW_ID,得看当前表有没有主键, 如果有主键,则不会添加该隐藏字段。

6.4.3 undolog

6.4.3.1 介绍

回滚日志,在insert、update、delete的时候产生的便于数据回滚的日志。

当insert的时候,产生的undo log日志只在回滚时需要,在事务提交后,可被立即删除。

而update、delete的时候,产生的undo log日志不仅在回滚时需要,在快照读时也需要,不会立即被删除。

6.4.3.2 版本链

有一张表原始数据为:

cce79a66642a4385a88fac59d94707b6.png

DB_TRX_ID : 代表最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID,是自增的。

DB_ROLL_PTR : 由于这条数据是才插入的,没有被更新过,所以该字段值为null。

然后,有四个并发事务同时在访问这张表。

A. 第一步

44be7a386c4c4669a704c733edaccb9b.png

当事务2执行第一条修改语句时,会记录undo log日志,记录数据变更之前的样子; 然后更新记录, 并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

a94bc53320d84a46827b4d94e175ca76.png

B.第二步

3072f9c4bfa2490c8cdb5eaf562dadf8.png

当事务3执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

4821207908294683891f0fa6bf3b68f6.png

C. 第三步

ae59bac4ebdc43949d87d11b13b740f8.png

当事务4执行第一条修改语句时,也会记录undo log日志,记录数据变更之前的样子; 然后更新记录,并且记录本次操作的事务ID,回滚指针,回滚指针用来指定如果发生回滚,回滚到哪一个版本。

45072e0051fd42518e35f28ba31d3722.png

最终我们发现,不同事务或相同事务对同一条记录进行修改,会导致该记录的undolog生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

6.4.4 readview

ReadView(读视图)是快照读SQL执行时MVCC提取数据的依据,记录并维护系统当前活跃的事务 (未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在readview中就规定了版本链数据的访问规则:

trx_id 代表当前undolog版本链对应事务ID。

条件是否可以访问说明
trx_id == creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的。
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了。
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在 ReadView生成后才开启。
min_trx_id <= trx_id <= max_trx_id如果trx_id不在m_ids中, 是可以访问该版本的成立,说明数据已经提交。

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED :在事务中每一次执行快照读时生成ReadView。

  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

6.4.5 原理分析

6.4.5.1 RC隔离级别

RC隔离级别下,在事务中每一次执行快照读时生成ReadView。

我们就来分析事务5中,两次快照读读取数据,是如何获取数据的?

在事务5中,查询了两次id为30的记录,由于隔离级别为Read Committed,所以每一次进行快照读 都会生成一个ReadView,那么两次生成的ReadView如下。

08a30638fcb14d6388ac99ac1ec8c82e.png

那么这两次快照读在获取数据时,就需要根据所生成的ReadView以及ReadView的版本链访问规则, 到undolog版本链中匹配数据,最终决定此次快照读返回的数据。

A. 先来看第一次快照读具体的读取过程:

d2c1cd67b13749329f789dd9cbd4b8a9.png

7fd6074359c142e5bf02cf88eb847b1a.png

B. 再来看第二次快照读具体的读取过程:

c01aa491200441b38a857cf424c79de7.png

6367141284cb4badb8df9d697dd99923.png

6.4.5.2 RR隔离级别

RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。 而RR 是可 重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

那MySQL是如何做到可重复读的呢? 我们简单分析一下就知道了

d54f2e9d551a4c22a6828ac8ca16f5dd.png

我们看到,在RR隔离级别下,只是在事务中第一次快照读时生成ReadView,后续都是复用该 ReadView,那么既然ReadView都一样, ReadView的版本链匹配规则也一样, 那么最终快照读返 回的结果也是一样的。

所以呢,MVCC的实现原理就是通过 InnoDB表的隐藏字段、UndoLog 版本链、ReadView 来实现的。 而MVCC + 锁,则实现了事务的隔离性。 而一致性则是由redolog 与 undolog保证。

3d97ecf7924f4556a02a5e91eaf5fc45.png

总结:

23f44301fc3646cf86639dcd1fe7248d.png

 

 

标签:存储,快照,log,事务,引擎,InnoDB,磁盘,日志
From: https://blog.csdn.net/weixin_56520780/article/details/144783552

相关文章

  • 操作系统模拟虚拟存储器的地址变换过程
    设计用于模拟快表、页表、地址变换所用的寄存器的数据结构;编制页表的初始信息文件,举例说明文件中具有的信息:共有5块,每块的状态、在内存和外存的起始地址等。编程实现虚拟存储器地址变换算法程序,动态输入所要访问的逻辑地址,变换过程文字描述以及变换后的物理地址;测试:输入......
  • Ceph存储
    第一章:存储概念介绍什么是存储storage简单来说,存储就是存放数据的介质,我们平时最常见的存储就是U盘、移动硬盘、笔记本使用的机械或固态硬盘等等。在服务器领域,为了数据的安全性,业务数据一般要与系统分开而且重要的业务数据一般是通过某种共享技术(nfs)挂载到远程存储上的......
  • 视图、存储过程、触发器 整理
    //视图//视图就是基表的映射//创建视图//create[orreplace]view视图名称[(视图列表)]asselect语句[with[cascaded|local]checkoption];//查看创建视图语句//showcreateview视图名称;//查看视图书记//select*from视图名称...;//修改视图//方......
  • 江科大STM32学习:10 DMA直接存储器取存
    参考STM32F0xxx参考手册>2.存储器和总线架构<>10.DMA<1.DMA简介2.存储器映像类型起始地址存储器用途ROM0x08000000程序存储器Flash存储C语言编译后的程序代码0x1FFFF000系统存储器存储BootLoader,用于串口下载0x1FFFF800选项字节存储一些独立于程序代码的配置参数RAM......
  • 计算机数据存储形式和编码
    计算机是如何存储数据的   数值类型的数据(整数、浮点数)   字符类型的数据(字符串)   数据类型:整型(byte\short\int\long)、浮点型(float\double)、字符型(char)、布尔型(boolean)  java  整型(short\int\long)、浮点型(float\double)、字符型(char)......
  • PSRAM(Pseudo SRAM,伪静态随机存取存储器)与SRAM
    PSRAM(PseudoSRAM,伪静态随机存取存储器)与SRAM(静态随机存取存储器)存在多方面区别:###技术原理-**SRAM**:利用双稳态触发器(由多个晶体管组成)来存储数据。只要电源持续供电,触发器就能保持其存储的状态,不需要额外的刷新操作,数据可以随时被读取和写入。-**PSRAM**:本质上是一种特殊的D......
  • 基于 Unity 引擎的 VR/AR 音视频编解码技术总结
    在VR/AR应用开发中,音视频编解码技术是实现沉浸式体验的关键环节之一。通过高效的音视频处理,可以实现实时通信、虚拟会议、在线视频流、沉浸式音频等功能。本文将围绕Unity引擎的VR/AR开发需求,系统总结音视频编解码的技术原理、常用工具、实现方案及优化策略。1.VR/AR......
  • Unity 引擎实现动作游戏技能和战斗功能的实现与优化
    动作游戏的核心在于流畅的技能与战斗系统,这包括打击判定、技能表现、战斗逻辑以及联机对战等多个关键模块。以下从技能系统实现、打击判定、表现优化和联机功能等方面详细总结Unity引擎如何实现和优化动作游戏的战斗功能。1.技能系统的实现动作游戏的技能系统通常涉及技......
  • linux中,redis哨兵和数据持久化存储
    redis哨兵:"主从同步增强架构","读写分离","高可用" 1.概念 是Redis主从同步的增强架构,可以实现Redis主从同步的读写分离和高可用 2.特性: 1、可以承接客户端连接,但不存储数据 2、实现Redis主从复制组的监控 3、实现Redis主从的读写分离 4、Redis主从复制组的故......
  • 用Apache Doris实现实时向量存储与查询
    文章目录概要整体架构流程技术名词解释技术细节小结概要提示:这里可以添加技术概要例如:openAI的GPT大模型的发展历程。整体架构流程提示:这里可以添加技术整体架构例如:在语言模型中,编码器和解码器都是由一个个的Transformer组件拼接在一起形成的。技术......