文章目录
概要
在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例
题解
方法一:暴力法
由于正方形的面积等于边长的平方,因此要找到最大正方形的面积,首先需要找到最大正方形的边长,然后计算最大边长的平方即可。
暴力法是最简单直观的做法,具体做法如下:
遍历矩阵中的每个元素,每次遇到 1,则将该元素作为正方形的左上角;
确定正方形的左上角后,根据左上角所在的行和列计算可能的最大正方形的边长(正方形的范围不能超出矩阵的行数和列数),在该边长范围内寻找只包含 1 的最大正方形;
每次在下方新增一行以及在右方新增一列,判断新增的行和列是否满足所有元素都是 1。
方法二:动态规划
可以使用动态规划降低时间复杂度。我们用 dp(i,j) 表示以 (i,j) 为右下角,且只包含 1 的正方形的边长最大值。如果我们能计算出所有 dp(i,j) 的值,那么其中的最大值即为矩阵中只包含 1 的正方形的边长最大值,其平方即为最大正方形的面积。
那么如何计算 dp 中的每个元素值呢?对于每个位置 (i,j),检查在矩阵中该位置的值:
如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;
如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1
如果读者对这个状态转移方程感到不解,可以参考 1277. 统计全为 1 的正方形子矩阵的官方题解,其中给出了详细的证明。
此外,还需要考虑边界条件。如果 i 和 j 中至少有一个为 0,则以位置 (i,j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。
标签:元素,最大,位置,矩阵,问题,正方形,边长,dp From: https://blog.csdn.net/2401_86458219/article/details/144475450