首页 > 其他分享 >【自然语言处理(NLP)】基于Transformer的中-英机器翻译

【自然语言处理(NLP)】基于Transformer的中-英机器翻译

时间:2022-10-30 20:35:11浏览次数:61  
标签:NLP Transformer en attr self cache None 机器翻译 cn

文章目录

  • ​​【自然语言处理(NLP)】基于Transformer的中-英机器翻译​​
  • ​​前言​​
  • ​​(一)、任务描述​​
  • ​​(二)、环境配置​​
  • ​​一、数据准备​​
  • ​​(一)、加载开发环境​​
  • ​​(二)、数据集加载​​
  • ​​(三)、构建词表​​
  • ​​(四)、创建数据集​​
  • ​​二、定义encoder,decoder内部实现​​
  • ​​三、构建基于Transformer的机器翻译模型​​
  • ​​(一)、定义超参数​​
  • ​​(二)、定义Encoder​​
  • ​​(三)、定义Decoder​​
  • ​​四、模型训练​​
  • ​​五、模型预测​​
  • ​​总结​​

前言

(一)、任务描述

飞桨框架实现了Transformer的基本层,因此可以直接调用:TransformerEncoderLayer类定义了编码器端的一个层,包括多头注意力子层及逐位前馈网络子层;TransformerEncoder类堆叠TransformerEncoderLayer层,返回指定层数的编码器;TransformerDecoderLayer类定义了解码器端的一个层,包括多头自注意力子层、多头交叉注意力子层及逐位前馈网络子层;TransformerDecoder类堆叠TransformerDecoderLayer层,返回指定层数的解码器。


(二)、环境配置

本示例基于飞桨开源框架2.0版本。

import paddle
import numpy as np
import matplotlib.pyplot as plt
print(paddle.__version__)

输出结果如下图1所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_transformer


一、数据准备


(一)、加载开发环境

import paddle
import paddle.nn as nn
import collections

# from paddle.nn.layer import Linear,Dropout,LayerNorm

'''
import paddle
from .common import Linear, Dropout
from .norm import LayerNorm
from .. import functional as F
from ... import tensor
from ...fluid import layers 1
from ...fluid.dygraph import Layer, LayerList 1
from ...fluid.param_attr import ParamAttr 1

'''
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.norm import LayerNorm
from paddle.fluid import layers
from paddle.fluid.dygraph import Layer,LayerList
from paddle.fluid.param_attr import ParamAttr
import paddle.nn.functional as F
import re
import copy
from paddle import tensor
import numpy as np

print(paddle.__version__)
# cpu/gpu环境选择,在 paddle.set_device() 输入对应运行设备。
# device = paddle.set_device('gpu')

(二)、数据集加载

统计数据集信息,确定句子长度,我们采用包含90%句子长度的长度值作为句子的长度

# 统计数据集中句子的长度等信息
lines = open('data/data158128/cmn.txt','r',encoding='utf-8').readlines()
print(len(lines))
datas = []
dic_en = {}
dic_cn = {}
for line in lines:
ll = line.strip().split('\t')
if len(ll)<2:
continue
datas.append([ll[0].lower().split(' ')[1:-1],list(ll[1])])
# print(ll[0])
if len(ll[0].split(' ')) not in dic_en:
dic_en[len(ll[0].split(' '))] = 1
else:
dic_en[len(ll[0].split(' '))] +=1
if len(ll[1]) not in dic_cn:
dic_cn[len(ll[1])] = 1
else:
dic_cn[len(ll[1])] +=1
keys_en = list(dic_en.keys())
keys_en.sort()
count = 0
# print('英文长度统计:')
for k in keys_en:
count += dic_en[k]
# print(k,dic_en[k],count/len(lines))

keys_cn = list(dic_cn.keys())
keys_cn.sort()
count = 0
# print('中文长度统计:')
for k in keys_cn:
count += dic_cn[k]
# print(k,dic_cn[k],count/len(lines))

en_length = 10
cn_length = 10

输出结果如下图2所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_自然语言处理_02


(三)、构建词表

# 构建中英文词表
en_vocab = {}
cn_vocab = {}

en_vocab['<pad>'], en_vocab['<bos>'], en_vocab['<eos>'] = 0, 1, 2
cn_vocab['<pad>'], cn_vocab['<bos>'], cn_vocab['<eos>'] = 0, 1, 2
en_idx, cn_idx = 3, 3
for en, cn in datas:
# print(en,cn)
for w in en:
if w not in en_vocab:
en_vocab[w] = en_idx
en_idx += 1
for w in cn:
if w not in cn_vocab:
cn_vocab[w] = cn_idx
cn_idx += 1

print(len(list(en_vocab)))
print(len(list(cn_vocab)))

# 英文词表长度:6057
# 中文词表长度:3533

输出结果如下图3所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_人工智能_03


(四)、创建数据集

接下来根据词表,我们将会创建一份实际的用于训练的用numpy array组织起来的数据集。

  • 所有的句子都通过补充成为了长度相同的句子。
  • 对于英文句子(源语言),我们将其反转了过来,这会带来更好的翻译的效果。
  • 所创建的padded_cn_label_sents是训练过程中的预测的目标,即,每个中文的当前词去预测下一个词是什么词。

padded_en_sents = []
padded_cn_sents = []
padded_cn_label_sents = []
for en, cn in datas:
if len(en)>en_length:
en = en[:en_length]
if len(cn)>cn_length:
cn = cn[:cn_length]
padded_en_sent = en + ['<eos>'] + ['<pad>'] * (en_length - len(en))
padded_en_sent.reverse()

padded_cn_sent = ['<bos>'] + cn + ['<eos>'] + ['<pad>'] * (cn_length - len(cn))
padded_cn_label_sent = cn + ['<eos>'] + ['<pad>'] * (cn_length - len(cn) + 1)

padded_en_sents.append(np.array([en_vocab[w] for w in padded_en_sent]))
padded_cn_sents.append(np.array([cn_vocab[w] for w in padded_cn_sent]) )
padded_cn_label_sents.append(np.array([cn_vocab[w] for w in padded_cn_label_sent]))

train_en_sents = np.array(padded_en_sents)
train_cn_sents = np.array(padded_cn_sents)
train_cn_label_sents = np.array(padded_cn_label_sents)

print(train_en_sents.shape)
print(train_cn_sents.shape)
print(train_cn_label_sents.shape)

输出结果如下图4所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_transformer_04


二、定义encoder,decoder内部实现

def _convert_param_attr_to_list(param_attr, n): 
if isinstance(param_attr, (list, tuple)):
assert len(param_attr) == n, (
"length of param_attr should be %d when it is a list/tuple" % n)
param_attrs = []
for attr in param_attr:
if isinstance(attr, bool):
if attr:
param_attrs.append(ParamAttr._to_attr(None))
else:
param_attrs.append(False)
else:
param_attrs.append(ParamAttr._to_attr(attr))
# param_attrs = [ParamAttr._to_attr(attr) for attr in param_attr]
elif isinstance(param_attr, bool):
param_attrs = []
if param_attr:
param_attrs = [ParamAttr._to_attr(None) for i in range(n)]
else:
param_attrs = [False] * n
else:
param_attrs = []
attr = ParamAttr._to_attr(param_attr)
for i in range(n):
attr_i = copy.deepcopy(attr)
if attr.name:
attr_i.name = attr_i.name + "_" + str(i)
param_attrs.append(attr_i)
return param_attrs


class MultiHeadAttention(Layer):

Cache = collections.namedtuple("Cache", ["k", "v"])
StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

def __init__(self,
embed_dim,
num_heads,
dropout=0.,
kdim=None,
vdim=None,
need_weights=False,
weight_attr=None,
bias_attr=None):
super(MultiHeadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.need_weights = need_weights

self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

self.q_proj = Linear(
embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)
self.k_proj = Linear(
self.kdim, embed_dim, weight_attr, bias_attr=bias_attr)
self.v_proj = Linear(
self.vdim, embed_dim, weight_attr, bias_attr=bias_attr)
self.out_proj = Linear(
embed_dim, embed_dim, weight_attr, bias_attr=bias_attr)

def _prepare_qkv(self, query, key, value, cache=None):
q = self.q_proj(query)
q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

if isinstance(cache, self.StaticCache):
# for encoder-decoder attention in inference and has cached
k, v = cache.k, cache.v
else:
k, v = self.compute_kv(key, value)

if isinstance(cache, self.Cache):
# for decoder self-attention in inference
k = tensor.concat([cache.k, k], axis=2)
v = tensor.concat([cache.v, v], axis=2)
cache = self.Cache(k, v)

return (q, k, v) if cache is None else (q, k, v, cache)

def compute_kv(self, key, value):
k = self.k_proj(key)
v = self.v_proj(value)
k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
return k, v


def forward(self, query, key=None, value=None, attn_mask=None, cache=None):
key = query if key is None else key
value = query if value is None else value
# compute q ,k ,v
if cache is None:
q, k, v = self._prepare_qkv(query, key, value, cache)
else:
q, k, v, cache = self._prepare_qkv(query, key, value, cache)

# scale dot product attention
# TODO(guosheng): use tensor.matmul, however it doesn't support `alpha`
product = layers.matmul(
x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)
if attn_mask is not None:
# TODO(guosheng): support bool mask
product = product + attn_mask
weights = F.softmax(product)
if self.dropout:
weights = F.dropout(
weights,
self.dropout,
training=self.training,
mode="upscale_in_train")

out = tensor.matmul(weights, v)

# combine heads
out = tensor.transpose(out, perm=[0, 2, 1, 3])
out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

# project to output
out = self.out_proj(out)

outs = [out]
if self.need_weights:
outs.append(weights)
if cache is not None:
outs.append(cache)
return out if len(outs) == 1 else tuple(outs)


class TransformerEncoderLayer(Layer):

def __init__(self,
d_model,
nhead,
dim_feedforward,
dropout=0.1,
activation="relu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None):
self._config = locals()
self._config.pop("self")
self._config.pop("__class__", None) # py3

super(TransformerEncoderLayer, self).__init__()
attn_dropout = dropout if attn_dropout is None else attn_dropout
act_dropout = dropout if act_dropout is None else act_dropout
self.normalize_before = normalize_before

weight_attrs = _convert_param_attr_to_list(weight_attr, 2)
bias_attrs = _convert_param_attr_to_list(bias_attr, 2)

self.self_attn = MultiHeadAttention(
d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[0],
bias_attr=bias_attrs[0])
self.linear1 = Linear(
d_model, dim_feedforward, weight_attrs[1], bias_attr=bias_attrs[1])
self.dropout = Dropout(act_dropout, mode="upscale_in_train")
self.linear2 = Linear(
dim_feedforward, d_model, weight_attrs[1], bias_attr=bias_attrs[1])
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout, mode="upscale_in_train")
self.dropout2 = Dropout(dropout, mode="upscale_in_train")
self.activation = getattr(F, activation)

def forward(self, src, src_mask=None, cache=None):
residual = src
if self.normalize_before:
src = self.norm1(src)
if cache is None:
src = self.self_attn(src, src, src, src_mask)
else:
src, incremental_cache = self.self_attn(src, src, src, src_mask,
cache)

src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)

residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return src if cache is None else (src, incremental_cache)

class TransformerEncoder(Layer):
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = LayerList([(encoder_layer if i == 0 else
type(encoder_layer)(**encoder_layer._config))
for i in range(num_layers)])
self.num_layers = num_layers
self.norm = norm

def forward(self, src, src_mask=None, cache=None):
output = src
new_caches = []
for i, mod in enumerate(self.layers):
if cache is None:
output = mod(output, src_mask=src_mask)
else:
output, new_cache = mod(output,
src_mask=src_mask,
cache=cache[i])
new_caches.append(new_cache)

if self.norm is not None:
output = self.norm(output)

return output if cache is None else (output, new_caches)



class TransformerDecoderLayer(Layer):

def __init__(self,
d_model,
nhead,
dim_feedforward,
dropout=0.1,
activation="relu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None):
self._config = locals()
self._config.pop("self")
self._config.pop("__class__", None) # py3

super(TransformerDecoderLayer, self).__init__()
attn_dropout = dropout if attn_dropout is None else attn_dropout
act_dropout = dropout if act_dropout is None else act_dropout
self.normalize_before = normalize_before

weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
bias_attrs = _convert_param_attr_to_list(bias_attr, 3)

self.self_attn = MultiHeadAttention(
d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[0],
bias_attr=bias_attrs[0])
self.cross_attn = MultiHeadAttention(
d_model,
nhead,
dropout=attn_dropout,
weight_attr=weight_attrs[1],
bias_attr=bias_attrs[1])
self.linear1 = Linear(
d_model, dim_feedforward, weight_attrs[2], bias_attr=bias_attrs[2])
self.dropout = Dropout(act_dropout, mode="upscale_in_train")
self.linear2 = Linear(
dim_feedforward, d_model, weight_attrs[2], bias_attr=bias_attrs[2])
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
self.norm3 = LayerNorm(d_model)
self.dropout1 = Dropout(dropout, mode="upscale_in_train")
self.dropout2 = Dropout(dropout, mode="upscale_in_train")
self.dropout3 = Dropout(dropout, mode="upscale_in_train")
self.activation = getattr(F, activation)

def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, None)
else:
tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
cache[0])
tgt = residual + self.dropout1(tgt)
if not self.normalize_before:
tgt = self.norm1(tgt)

residual = tgt
if self.normalize_before:
tgt = self.norm2(tgt)
if cache is None:
tgt = self.cross_attn(tgt, memory, memory, memory_mask, None)
else:
tgt, static_cache = self.cross_attn(tgt, memory, memory,
memory_mask, cache[1])
tgt = residual + self.dropout2(tgt)
if not self.normalize_before:
tgt = self.norm2(tgt)

residual = tgt
if self.normalize_before:
tgt = self.norm3(tgt)
tgt = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = residual + self.dropout3(tgt)
if not self.normalize_before:
tgt = self.norm3(tgt)
return tgt if cache is None else (tgt, (incremental_cache,
static_cache))

class TransformerDecoder(Layer):
def __init__(self, decoder_layer, num_layers, norm=None):
super(TransformerDecoder, self).__init__()
self.layers = LayerList([(decoder_layer if i == 0 else
type(decoder_layer)(**decoder_layer._config))
for i in range(num_layers)])
self.num_layers = num_layers
self.norm = norm

def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, cache=None):
output = tgt
new_caches = []
for i, mod in enumerate(self.layers):
if cache is None:
output = mod(output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
cache=None)
else:
output, new_cache = mod(output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
cache=cache[i])
new_caches.append(new_cache)

if self.norm is not None:
output = self.norm(output)

return output if cache is None else (output, new_caches)

三、构建基于Transformer的机器翻译模型

定义网络结构后,需要配置优化器、损失函数、评价指标。


(一)、定义超参数

  • 首先定义超参数,用于后续模型的设计与训练

embedding_size = 128
hidden_size = 512
num_encoder_lstm_layers = 1
en_vocab_size = len(list(en_vocab))
cn_vocab_size = len(list(cn_vocab))
epochs = 20
batch_size = 16

(二)、定义Encoder

  • 使用TransformerEncoder定义Encoder

# encoder: simply learn representation of source sentence
class Encoder(paddle.nn.Layer):
def __init__(self,en_vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
super(Encoder, self).__init__()
self.emb = paddle.nn.Embedding(en_vocab_size, embedding_size,)
"""
d_model (int) - 输入输出的维度。
nhead (int) - 多头注意力机制的Head数量。
dim_feedforward (int) - 前馈神经网络中隐藏层的大小。
"""

encoder_layer = TransformerEncoderLayer(embedding_size, head_number, middle_units)
self.encoder = TransformerEncoder(encoder_layer, num_layers)

def forward(self, x):
x = self.emb(x)
en_out = self.encoder(x)
return en_out

(三)、定义Decoder

  • 使用TransformerDecoder定义Decoder

class Decoder(paddle.nn.Layer):
def __init__(self,cn_vocab_size, embedding_size,num_layers=2,head_number=2,middle_units=512):
super(Decoder, self).__init__()
self.emb = paddle.nn.Embedding(cn_vocab_size, embedding_size)

# self.decoder = Decoder(decoder_layer, num_layers)
decoder_layer = TransformerDecoderLayer(embedding_size, head_number, middle_units)
self.decoder = TransformerDecoder(decoder_layer, num_layers)

# for computing output logits
self.outlinear =paddle.nn.Linear(embedding_size, cn_vocab_size)

def forward(self, x, encoder_outputs):
x = self.emb(x)
# dec_input, enc_output,self_attn_mask, cross_attn_mask
de_out = self.decoder(x, encoder_outputs)
output = self.outlinear(de_out)
output = paddle.squeeze(output)
return output

四、模型训练

encoder = Encoder(en_vocab_size, embedding_size)
decoder = Decoder(cn_vocab_size, embedding_size)

opt = paddle.optimizer.Adam(learning_rate=0.0001,
parameters=encoder.parameters() + decoder.parameters())

for epoch in range(epochs):
print("epoch:{}".format(epoch))

# shuffle training data
perm = np.random.permutation(len(train_en_sents))
train_en_sents_shuffled = train_en_sents[perm]
train_cn_sents_shuffled = train_cn_sents[perm]
train_cn_label_sents_shuffled = train_cn_label_sents[perm]
# print(train_en_sents_shuffled.shape[0],train_en_sents_shuffled.shape[1])
for iteration in range(train_en_sents_shuffled.shape[0] // batch_size):
x_data = train_en_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
sent = paddle.to_tensor(x_data)
en_repr = encoder(sent)

x_cn_data = train_cn_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]
x_cn_label_data = train_cn_label_sents_shuffled[(batch_size*iteration):(batch_size*(iteration+1))]

loss = paddle.zeros([1])
for i in range( cn_length + 2):
cn_word = paddle.to_tensor(x_cn_data[:,i:i+1])
cn_word_label = paddle.to_tensor(x_cn_label_data[:,i])

logits = decoder(cn_word, en_repr)
step_loss = F.cross_entropy(logits, cn_word_label)
loss += step_loss

loss = loss / (cn_length + 2)
if(iteration % 50 == 0):
print("iter {}, loss:{}".format(iteration, loss.numpy()))

loss.backward()
opt.step()
opt.clear_grad()

输出结果如下图5所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_paddle_05


五、模型预测

  • 随机从训练集中抽取几句话来进行预测

encoder.eval()
decoder.eval()

num_of_exampels_to_evaluate = 10

indices = np.random.choice(len(train_en_sents), num_of_exampels_to_evaluate, replace=False)
x_data = train_en_sents[indices]
sent = paddle.to_tensor(x_data)
en_repr = encoder(sent)

word = np.array(
[[cn_vocab['<bos>']]] * num_of_exampels_to_evaluate
)
word = paddle.to_tensor(word)


decoded_sent = []
for i in range(cn_length + 2):
logits = decoder(word, en_repr)
word = paddle.argmax(logits, axis=1)
decoded_sent.append(word.numpy())
word = paddle.unsqueeze(word, axis=-1)

results = np.stack(decoded_sent, axis=1)
for i in range(num_of_exampels_to_evaluate):
print('---------------------')
en_input = " ".join(datas[indices[i]][0])
ground_truth_translate = "".join(datas[indices[i]][1])
model_translate = ""
for k in results[i]:
w = list(cn_vocab)[k]
if w != '<pad>' and w != '<eos>':
model_translate += w
print(en_input)
print("true: {}".format(ground_truth_translate))
print("pred: {}".format(model_translate))

输出结果如下图6所示:

【自然语言处理(NLP)】基于Transformer的中-英机器翻译_机器翻译_06


总结

本系列文章内容为根据清华社出版的《自然语言处理实践》所作的相关笔记和感悟,其中代码均为基于百度飞桨开发,若有任何侵权和不妥之处,请私信于我,定积极配合处理,看到必回!!!

最后,引用本次活动的一句话,来作为文章的结语~( ̄▽ ̄~)~:

标签:NLP,Transformer,en,attr,self,cache,None,机器翻译,cn
From: https://blog.51cto.com/u_15745546/5807836

相关文章